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Foreword

These lecture notes describe the lectures "c59 Quantitative in vivo NMR", as given in the
second half of 1994. The lectures are concerned with the signal processing and quantitative
data-analysis work of the section Spin Imaging (SI) (leader Prof. Dr. A.F. Mehlkopf) of
the research group "Spectroscopie en Stralingstechnologie" (SST) of the Department of
Applied Physics, University of Technology Delft.

With the word "quantitative" we mean, that the relevant physical parameters of NMR
time-domain signals are determined, i.e. the frequencies, decay constants, amplitudes and
phases. The quantitative data analysis is realized by �tting model functions to the data
by means of Least Squares �tting methods. These �tting methods may be noniterative
as well as iterative. Important aspects of the methods are the precision, with which the
parameters can be determined and the amount of prior knowledge about the in vivo NMR
signals, that can be incorporated into the quanti�cation algorithms.

With the words "in vivo NMR" we indicate, that the NMR experiments are carried
out on living objects. The living objects may be animals but also human volunteers and
patients. An important aspect of in vivo NMR is, that a so-called volume of interest is to
be selected, i.e. some form of localization is to be performed. Another aspect of in vivo

NMR, particularly if the NMR experiments are carried out in clinical circumstances, is
that the measurement time is limited. That is to say, in general the signal-to-noise-ratio
(SNR) of the in vivo NMR signals will be low. Given this low SNR, it is the task of the
signal processing and quantitative data-analysis methods to determine the parameters of
interest as precise as possible.

The following persons have contributed to the work, decribed in these lecture notes:

H. Barkhuijsen, R. de Beer, A. van den Boogaart, W.M.M.J. Bovee, J.H.C. Creygton,
J.W. Deumens, J.E. van Dijk, A.C. Drogendijk, R. van Duuren, C. Huegen, A. Knijn, J.
van Leeuwen, H.F.M. Lohman, G.J. Marseille, A.F. Mehlkopf, R.P.J. Merks, F. Michels,
K. Nederveen, D. van Ormondt, W.W.F. Pijnappel, A.M. Salomons, M. Schramp, S.
Slegt, B.P.O. van Tongeren, J.W.C. van der Veen, C. van der Voort, F.T.A.W. Wajer,
K.M. Wiacek, J. Zonneveld, W.R. van der Zwan

R. de Beer
1994
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Chapter 1

Introduction

1.1 MRS and the importance of quantitative data

analysis

At present, Nuclear Magnetic Resonance (NMR) on living objects (animals, human vol-
unteers, patients) is widely accepted. As one of the outcomes, the speciality Magnetic
Resonance Imaging (MRI) is already used in clinical practice for a number of years [1].
Another area of the in vivo NMR, the Magnetic Resonance Spectroscopy (MRS) [2], is
also subject to important developments, which has raised high hopes for MRS becoming
a medical diagnostic tool. In the mean time it has been established that the success of
MRS as a medical tool among other things depends on the way in which the NMR data
can be analysed by the computer. In that context especially the quantitative data analysis

-1-0.8-0.6-0.4-0.200.20.40.60.81
Frequency (kHz)

(a)

(b)

Figure 1.1: In vivo 31P NMR spectra of the human brain. (a) Healthy volunteer. (b)

Patient with a tumor. Notice the much larger peak at 0.2 kHz.

is important. With quantitative data analysis we mean that the measured NMR time-
domain signals are interpreted in terms of relevant physical parameters, such as frequen-
cies, decay constants and amplitudes. These parameters, in turn, can be translated into
relevant biochemical or medical parameters such as ratios of metabolite concentrations
and the pH value of the tissue, concerned.
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When estimating the quantitative parameters, a correct interpretation of the NMR
decay function plays an important role. The physiscs of the underlying NMR experiment
can provide decisive information about that aspect. Also an accurate estimation of the
NMR amplitudes is important. The latter plays an essential role when applying MRS in
medical diagnostics (see Figure 1.1).

-0.25-0.2-0.15-0.1-0.0500.050.10.15
Frequency (kHz)

1

Figure 1.2: In vivo 1H NMR spectrum of a human brain. The large peak at 0 kHz is due

to the water protons.

In clinical circumstances time consuming measurements usually are not allowed. As
a consequence in vivo NMR spectra are often characterized by a low signal-to-noise-ratio
(SNR) (see Figure 1.1). Another characteristic feature of in vivo NMR signals is that the
spectra may be disturbed by unwanted arti�cial e�ects, caused by the localization

1.522.533.5
Frequency (kHz)

Figure 1.3: In vivo 23Na NMR spectrum of the heart of a rat. The small peak is due to

intra- and the large peak due to extracellular 23Na. The separation between the two peaks

is introduced by a shift reagent.

method, applied. A third typical aspect of in vivo NMR spectroscopy is that the spectra
strongly di�er, when measuring on the various nuclei. We mention the following charac-
teristic properties:
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� In 31P spectra there are heavily overlapping NMR lines and a dominant broad
background signal (see Figures 1.1, 1.5 and 1.6).

� In 1H spectra there is a dominant H2O signal and unresolved multiplet structure
(see Figure 1.2).

� When measuring on the 23Na nucleus, often shift reagents are applied to separate
the intra- and extracellular 23Na. Also multiple quantum excitation is used for that
purpose. Furthermore, unresolved quadrupole interaction is a typical aspect of 23Na
spectroscopy (see Figure 1.3).

� Concerning the 13C nucleus it can be said that its in vivo spectrum often contains
much detailed information and therefore 13C spectroscopy appears to be promishing
for medical diagnostics (see Figure 1.4).

-4-2024
Frequency (kHz)

Figure 1.4: In vivo 13C NMR spectrum of perfused rat liver.

-1.5-1-0.500.511.5
Frequency (kHz)

1

2

3

4

5

Figure 1.5: In vivo 31P NMR spectra of a human brain. The spectra were taken from the

same volunteer. The di�erences in the spectra are caused by noise.
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In the mean time it has been established in a number of quantitative studies [3] that
variations in the parameters of in vivo NMR spectra for a large portion are caused by
human interactions. Even in computerized quanti�cations signi�cant variations still can
occur. In the latter case they may be caused by the disturbing in
uence of noise (see
Figure 1.5 and [4]). In order to improve the quantitative data analysis, an important step
is to introduce prior knowledge about the in vivo NMR signals in the computer algorithms
[5] [6]. By using prior knowledge it was found to be possible in certain cases to reduce
the variations in the quantitative parameters by an order of magnitude (see Figure 1.6).

-2-1.5-1-0.500.511.52
Frequency (kHz)

a

b

c

Figure 1.6: (a) Proton decoupled in vivo 31P NMR spectrum of a human brain. (b)

Spectrum of a �tted model function, obtained via nonlinear least squares �tting and prior

knowledge on ATP. As many as 15 NMR peaks could be quanti�ed. (c) Spectrum of the

residue signal.

Conclusion:

Quanti�cation in MRS has speci�c aspects due to the typical features of in vivo NMR
signals. It plays an essential role in developing MRS as a clinical tool.

1.2 Mathematical description of the NMR signal

1.2.1 The NMR FID experiment

The motion of a nuclear magnetization vector ~M in a constant magnetic �eld ~B0 and an
oscillating magnetic �eld (r.f. �eld) ~B1 perpendicular to ~B0 and rotating around it with
an angular velocity !, is described by the equations of Bloch [7]

d ~M

dt
= 
 ~M � [(B0 +

!



) ~uz +B1~ux]�

Mz �M0

T1
~uz �

Mx~ux +My~uy

T2
; (1:1)
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where
t is the sampling time,

 is the gyromagnetic ratio,
~ux; ~uy; ~uz are the unit vectors along the rotating frame,
M0 is the equilibrium magnetization at t = 0,
T1 is the longitudinal relaxation time and
T2 is the transverse relaxation time.

(1:2)

If the r.f. �eld ~B1 is present in a time, much shorter than T1 or T2, one speaks of a
pulse. During the pulse the magnetization makes a precession around ~B1 in the rotating
frame. The pulse is called a 900 pulse if this precession is over 900. Once the pulse
is switched o�, the magnetization starts to precess around the z-axis with an angular
velocity �! = (! � !0), where !0 is the resonance angular velocity, de�ned by

!0 = �
B0: (1:3)

The precessing magnetization induces a time-domain signal in the detection system of
the NMR scanner, which after down transformation of the frequency can be described by

s(t) = a exp(�
t

T2
) exp[i(2���t+ �)]; (1:4)

where the amplitude a is proportional to the number of nuclei, concerned, �! = 2���
and i2 = �1. One speaks of a Free Induction Decay (FID). With the words number of

nuclei, concerned we mean the number nuclei of the same kind, i.e. belonging to the same
molecule.

Conclusion:

In the ideal case the NMR FID of a certain nucleus can be described by an exponentially

decaying complex-valued sinusoid, the amplitude of which is proportional to the number
of nuclei of that kind, the decay constant is equal to the reciprocal of the transverse
relaxation time of that nucleus, the frequency is equal to the di�erence between the
frequency of the NMR spectrometer and the resonance frequency of that nucleus and the
overall (zero-order) phase is determined by the spectrometer setting.

1.2.2 NMR time domain versus frequency domain

It is well known that the resonance frequency is di�erent for a bare nucleus and for a
nucleus embedded in bulk matter. This frequency di�erence can be included into the
resonance condition as

!0 = �
B0(1 � �); (1:5)

where � is the so-called chemical shift. The chemical shift can be di�erent for di�erent
molecules or di�erent parts of a molecule. As a result, the time-domain signal of an NMR
FID experiment in general can be described by
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s(t) =
KX
k=1

ak exp(��kt) exp[i(2���kt+ �k)]; (1:6)

where K is the number of harmonic components, i.e. the number of NMR peaks in the
related frequency domain and the symbol �k =

1

T2k
denotes the decay constant of the k'th

component.
When speaking about quantitative data analysis we in fact mean the estimation of

four parameters for each harmonic component: the amplitude, the decay constant, the
frequency and the phase. In the NMR world it is common use to perform the data analysis
not directly on the time-domain (measurement-domain) data but on the related Fourier
Transform (FT) data. This FT is de�ned as [8]

S(�0) =
Z 1

�1
s(t) exp(�i2��0t)dt: (1:7)

We now consider the FT of a single harmonic component. For the sake of simplicity we
drop the subscript k and the symbol � (of ��). Moreover we assume momentarily, that
the phase � of the harmonic component is equal to zero. If we take into account that
s(t) = 0 for t < 0, then the FT can be written as

S(�0) =
Z 1

0
a expf[��+ i2�(� � �0)]tgdt =

�����a expf[��+ i2�(� � �0)]tg

��+ i2�(� � �0)

�����
1

0

=

= �
a

��+ i2�(� � �0)
= R(�0) + iI(�0); (1.8)

where R(�0) and I(�0) are the real and imaginary part, respectively, of the complex Lorentz

line

R(�0) =
a

�

1

1 + [2�(���
0)

�
]2

and I(�0) =
a

�

2�(���0)
�

1 + [2�(���
0)

�
]2
: (1:9)

In Figure 1.7 the real and imaginary part of an exponentially decaying, complex-
valued, sinusoid are displayed, together with the real and imaginary part of the related
Lorentz line in the frequency domain. Typical for the Lorentz line are the long tails,
especially of the imaginary part. Since neighbouring lines may overlap with these long
tails, in practice one works with the real part of the Lorentz line. When looking at
Equation 1.9, the following can be concluded:

� The maximum value (the height) of R(�0) is a
�
(at � = �0). This maximum value

thus also depends on the decay constant �.

� The width at half height (i.e. the line width) is �

�
.

� The area under R(�0) is

Z 1

�1
R(�0)d�0 =

a

�

Z 1

�1

d�0

1 + [2�(���
0)

�
]2
=

a

2�

Z 1

�1

dx

1 + x2
=
a

2
; (1:10)

thus only proportional to the amplitude a. In these lecture notes we will use the
name line intensity to indicate the amplitude in the time domain as well as the peak
area in the frequency domain.

9



In practice an NMR FID will never be acquired from t = 0 to 1, but for instance
from t = t1 to t = t2. One speaks of a truncated signal. Moreover, in general the overall
phase of a FID will not be equal to zero. Both e�ects have signi�cant consequences for
the FT of the FID

S(�0) =
Z t2

t1

a exp(i�) expf[��+ i2�(� � �0)]tg dt =

= a exp(i�)

�����expf[��+ i2�(� � �0)]tg

��+ i2�(� � �0)

�����
t2

t1

=

= a exp(i�)
expf[��+ i2�(� � �0)]t2g � expf[��+ i2�(� � �0)]t1g

��+ i2�(� � �0)
:(1.11)

a

b

c

d

Figure 1.7: (a) Real and (b) imaginary part of an exponentially decaying, complex-valued,

sinusoid. (c) Real and (d) imaginary part of the related Lorentz line in the frequency

domain.

We now consider three cases:

(1) � 6= 0, t1 = 0 and t2 =1.

This yields for the FT

S(�0) = exp(i�) [R(�0) + iI(�0)]: (1:12)

The e�ect of � 6= 0 is that the frequency domain is composed of a linear combination of
the real and imaginary part of the complex Lorentz line (see Figure 1.8). One can undo
this linear combination by multiplying Expression 1.12 by exp(�i�). This correction is
called the zero-order phase correction (i.e. not dependent on the frequency).

(2) � = 0, t1 6= 0 and t2 =1.

This yields for the FT

10



S(�0) = �a
expf[��+ i2�(� � �0)]t1g

��+ i2�(� � �0)
: (1:13)

For the real part of Expression 1.13 one can write

R0(�0) = exp(��t1) fcos[2�(� � �0)t1] R(�
0)� sin[2�(� � �0)t1] I(�

0)g: (1:14)

Notice that (see also Figure 1.8):

� There is an oscillating behaviour with period 1
t1
.

� At �0 = � the FT behaves as a complex Lorentz line.

� The maximum height at �0 = � is decreased to a

�
exp(��t1).

-0.4 -0.2 0 0.2 0.4
Frequency (kHz)

a

b

c

d

Figure 1.8: E�ects of a zero-order phase and time-domain signal truncation. (a) Original

Lorentz line (real part), originating from 256 time-domain data points. (b) With a zero-

order phase of 600. (c) After truncation of the �rst 10 data points. (d) After truncation

of the last 200 data points.

(3) � = 0, t1 = 0 and t2 6=1.

This yields for the FT

S(�0) = a
expf[��+ i2�(� � �0)]t2g � 1

��+ i2�(� � �0)
: (1:15)

For the real part of Expression 1.15 one can write

R0(�0) = f1 � exp(��t2) cos[2�(� � �0)t2]g R(�
0) + exp(��t2) sin[2�(� � �0)t2] I(�

0):
(1:16)

Notice that (see also Figure 1.8):
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� There is an oscillating behaviour with period 1

t2
. The amplitude of this oscillation

is small since usually �t2 � 1.

� At �0 = � the FT behaves as a complex Lorentz line.

� The maximum height at �0 = � is decreased to a

�
[1� exp(��t2)].

Conclusions:

(a) In the ideal case the FT of a FID harmonic component is a complex Lorentz line.
(b) If the zero-order phase � 6= 0 the FT becomes a linear combination of the real and
imaginary part of the complex Lorentz line.
(c) Truncation of the FID at the beginning or end yields an oscillating behaviour of the
FT. The period of the oscillation is determined by the shape of the truncation (step)
function, concerned.

1.2.3 The Fourier Transform and the convolution theorem

The e�ect of time-domain truncation on the related FT can be described alternatively
by using the convolution theorem [8]. This theorem says that the FT of a product of two
time-domain functions f(t) and g(t) is equal to F (�0)�G(�0), where the symbol � denotes
the so-called convolution integral, de�ned by

F (�0) �G(�0) =
Z 1

�1
F (� )G(�0 � � )d�: (1:17)

A truncated signal now can be considered as being the product of the original signal and
a step function of the proper length and position. Application of the convolution theorem
on this product then yields the same FT as shown in Equation 1.11.

Conclusion:

If a real-world NMR time-domain signal has been truncated, the correct FT of that signal
can only be determined if ones succeeds in properly deconvoluting the frequency domain.
If one fails in performing this deconvolution, this could be an argument for quantifying
the data directly in the measurement domain (i.e. the time domain).

1.2.4 The discrete Fourier Transform (DFT)

In practice an NMR FID is not acquired continuously but discretely at sampling times
tn = n�t+ tbeg, with n = 0; 1; : : : ; N � 1. Consequently the desired transformation to the
frequency domain has to be realized by a discrete Fourier Transform (DFT), de�ned as
[8]

Ŝk = �t
N�1X
n=0

a exp(i�) exp[(��+ i2��)(n�t+ tbeg)] exp(
�i2�nk

N
); (1:18)

where the k = 0; 1; : : : ; N�1 denotes the frequency-domain points and the caret indicates,
that the DFT of a model function is taken (i.e. without having the disturbances of
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noise). It should be noted that the quantity �Nyq =
1

2�t
is called the Nyquist frequency.

Apparently the DFT of the time-domain data points is a periodic function with a period
of 2�Nyq.

When using the property
N�1X
n=0

zn =
1� zN

1� z
; (1:19)

where z is a complex number, it follows that

Ŝk = a�t exp[��tbeg + i(2��tbeg + �)]
1� expf[��+ i2�(� � k

N�t
)]N�tg

1� expf[��+ i2�(� � k

N�t
)]�tg

: (1:20)

For the sake of simplicitywe assume that � = 0, that �t is very small and that �N�t� 1.
Equation 1.20 then can be written as

Ŝk = �a
exp[(��+ i2��)tbeg]

��+ i2�(� � k

N�t
)
: (1:21)

-0.4 -0.2 0 0.2 0.4
Frequency (kHz)

a

b

Figure 1.9: Graphical presentation of the �rst-order phase correction. (a) DFT of a time-

domain signal, truncated at the beginning. The zero-order phase � = 0. The �rst two

data points were truncated. (b) DFT of the same signal, after applying �rst-order phase

correction. Only the real parts of the DFT's are shown.

We see that, apart from its discrete character, Equation 1.21 almost has the same shape as
Equation 1.13. The di�erence in the numerator is caused by the fact that the continuous
FT starts its integration at t = tbeg = t1 whereas the DFT starts its summation at n = 0.
As a result, the numerator of the DFT does not depend on k (i.e. has not an oscillating
behaviour) but contains only a constant, complex-valued, factor. That is to say, there is
a phase e�ect, that now depends on the �rst power of the frequency. This e�ect can be
corrected for by multiplying Expression 1.21 by exp(�i2�

ktbeg

N�t
), which is called the �rst-

order phase correction. After this correction one obtains an expression that is similar to
Expression 1.13 (i.e. now also with an oscillating behaviour; see Figure 1.9).
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1.2.5 The in vivo NMR lineshape

It was shown in subsection 1.2.2 that the FT of an NMR FID yields a complex-valued
Lorentz line. This lineshape is directly related to the exponential decay of the FID, which
according to the equations of Bloch is determined by the transverse relaxation of the
nucleus, concerned (see Equations 1.1 and 1.6). In real-world in vivo NMR experiments
there may be other causes for the decay of the FID's such as inhomogeneity of the con-
stant magnetic �eld ~B0 due to instrumental e�ects or to the susceptibility of the living
object. One or the other is the cause that a mathematical description of the decay of
the NMR FID's by a single exponential actually is too simple. However, it should be
noted, when setting the instrumental conditions of an in vivo NMR experiment, that it
always is attempted to correct for the magnetic �eld inhomogeneity in such a way, that
the additional decay also has a exponential character.

For the sake of completeness we consider in this subsection a few other time-domain
decay functions. After applying Fourier Transformation these decay functions lead to
other lineshapes. We mention:

� The Gaussian decay:
exp(��t2): (1:22)

� The Voigt decay:
exp(��t) exp(��t2): (1:23)

� The triangle decay:
1 � i2� �� t� exp(�i2� �� t

(2� �� t)2
; (1:24)

where �� is equal to the width of the triangle in the frequency domain at zero height.
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Figure 1.10: Graphical presentation of three lineshapes. (a) Lorentz. (b) Gauss. (c)

Triangle.

In Figure 1.10 the related frequency domains of the exponential, the Gauss and the triangle
decay are displayed. Notice the long tail of the Lorentz line. Notice also that the triangle
decay function is capable of describing an asymmetrical lineshape.
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1.2.6 The NMR spin echo experiment

Sofar we have described the NMR FID experiment. We have seen that the essence of
that experiment is the usage of a single 900 r.f. pulse. However, an alternative way of
measuring an NMR signal is the spin echo method. In that case a second r.f. pulse is
given after a certain delay time � , now with a related precession angle of 1800. The e�ect
of the second pulse is that at time t = 2� a so-called nuclear spin echo can be detected
[7]. This spin echo has an increasing character for t < 2� and a decreasing character for
t > 2� (see Figure 1.11). In general the increasing or decreasing behaviour need not to
be according to an exponential function, but for the sake of simplicity we will assume so
in these lecture notes. In that case the lineshape function for the spin echo becomes

exp[�1(t� 2� )] for t < 2� and exp[��2(t� 2� )] for t > 2�; (1:25)

where �1 > 0, �2 > 0 and in general �1 6= �2.
In principle the NMR spin echo time-domain signal contains the same information

concerning frequencies and line intensities as the NMR FID signal. However, an important
reason for using the spin echo pulse sequence is that the delay time between the r.f. pulses
o�ers the opportunity of manipulating the nuclear magnetization, for instance for creating
spatial localization.

0 50 100 150 200 250

Time (ms)

Figure 1.11: Real part of a complex-valued 1H spin echo time-domain signal of a human

brain.
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Chapter 2

Time Domain Quanti�cation

2.1 Quantitative data analysis and the choice of the

analysis domain

In the previous chapter a mathematical description was given of the NMR FID signal, in
the measurement (time) domain as well as in the transformation (frequency) domain. Also
a short description of the NMR spin echo signal was given. Both types of NMR signals
have in common that they can contain the same information concerning frequencies and
line intensities. When quantifying the latter parameters one can use the time-domain as
well as the frequency-domain data. Concerning the line intensities this means that one
has to determine either the time-domain amplitudes or the frequency-domain peak areas.

Regarding the choice of the domain for performing the quantitative data analysis we
note the following:

� Working in the frequency domain o�ers an easy opportunity of reducing the data
analysis to a limited frequency region of the NMR spectrum. However, under certain
conditions frequency-selective quantitative data analysis in the time domain is also
feasible [9].

� The FT of truncated time-domain data needs to be deconvoluted, before or during
the quantitative data analysis [10].

� When quantifying in the time domain, one can employ the speci�c mathematical
properties of the exponential decay [11], assuming that this decay function correctly
describes the decay of the in vivo NMR signals, concerned.

� If the decay of the NMR time-domain signal is other than exponential, the related
FT may be a complicated mathematical function. For instance, the Voigt decay,
shown in Equation 1.23, leads to a very complicated FT [12] which consequently is
di�cult and time consuming to quantify.

When choosing the analysis domain, we give priority to the latter two items. This
means that in these lecture notes we will limit ourselves to dealing with quantitative data
analysis methods in the time domain.
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2.2 Quantitative data analysis by means of �tting

of model functions

In these lecture notes the quantitative data analysis in fact boiles down to �tting the
correct mathematical function (the model function) to the NMR time-domain data. This
in general will leed to applying a Least-Squares (LS) procedure [13]. We will limit our-
selves thereby to quantifying NMR FID signals. If we assume that Equation 1.6 correctly
describes the in vivo NMR FID signals, then in case of K harmonic components (K
peaks) one has to estimate 4K unknown parameters. Among these parameters the decay
constants and frequencies appear nonlinearly in the model function whereas the ampli-
tudes and phases can be combined to complex-valued linear parameters via the equation
ck = ak exp(i�k). As a consequence of the appearance of nonlinear parameters, in gen-
eral the LS methods will be iterative. However, when applying the speci�c mathematical
properties of the exponential decay model, in certain quanti�cation methods it is possible
to estimate the nonlinear parameters in a linear way, i.e. noniteratively.

2.3 Noniterative versus iterative �tting methods

Speci�c properties of noniterative and iterative �tting methods are:

Noniterative

� The model parameters are calculated in one single step.

� There is no need for supplying starting values for the nonlinear parameters.

� Human decisions concerning the quanti�cation methods can be minimized.

� The model function is limited to the exponential decay model.

� Application of prior knowledge on the model function is only possible on a limited
scale.

Iterative

� The model parameters are to be estimated via a number of iteration steps.

� In the �rst iteration step there should be starting values for the nonlinear parame-
ters.

� There are no limitations concerning the mathematical shape of the model functions.

� One can employ prior knowledge on model parameters in an easy fashion.

� If one applies a so-called Maximum Likelihood method [13], there are no systematic
errors in the values of the parameters and the statistical errors can be approximated
by theoretical lower bounds.

� In general the computer algorithms will be time consuming.
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2.4 Noniterative �tting methods

2.4.1 Introduction

If one wants to perform the quantitative data analysis in a noniterative fashion, one has
to replace the original, nonlinear, model function by an alternative function containing
only linear parameters. A necessary condition then is, of course, that one can transform
the new, linear, parameters into the original ones. In these lecture notes we will show
two examples of this approach. They both have in common that they are based on the
so-called Singular Value Decomposition (SVD) [14] of a two-dimensional (2-D) matrix,
composed of the data points of the NMR time-domain signal. In the next sections the
concepts data matrix and SVD of the data matrix will be introduced.

2.4.2 The data matrix

Starting from Equation 1.6 we can write in case of a discretely sampled NMR FID signal

sn =
KX
k=1

ck�
n+�
k + �n = ŝn + �n; (2:1)

where
n = 0; : : : ; N � 1 denotes the sampling times n�t;
ck = ak exp(i�k) is the k'th complex-valued amplitude,
�k = exp[(��k + i2��k)�t] is the k'th so-called signal pole,
�t is the sampling step,
� denotes a delay time tbeg = ��t;
ŝn is the model function contribution and
�n is the noise contribution.

(2:2)

Given the time-domain data points sn, we can de�ne a so-called data matrix according to

S =

0
BBBB@
s0 s1 s2 � � � sM�1

s1 s2 s3 � � � sM
...

...
... � � �

...
sL�1 sL sL+1 � � � sN�1

1
CCCCA ; (2:3)

where L and M should be chosen greater than K (the number of NMR components),
subject to the constraint L+M = N +1. Notice that the data matrix possesses so-called
Hankel structure, i.e. all elements on the anti diagonals are equal.

We now �rst consider a noiseless NMR FID signal, containing only one single complex-
valued, exponentially decaying, sinusoid. In that case sn = ŝn and the data matrix has
the following simple form

S1 = c1�
�
1

0
BBBB@
�01 �11 �21 � � � �M�1

1

�11 �21 �31 � � � �M1
...

...
... � � �

...
�L�11 �L1 �L+11 � � � �N�11

1
CCCCA ; (2:4)
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where the subscript 1 denotes that the signal contains one component (i.e. K = 1). Notice
that the matrix S1 has only one linearly independent row (or column), or in other words
that the so-called rank of the matrix is equal to one.

The next step is to consider a noiseless time-domain signal with K exponentially
decaying sinusoids. In that case the data matrix is equal to

S = S1 + S2 + : : :+ SK: (2:5)

Adding the K matrices Sk yields a matrix S, having K linearly independent rows (or
columns), i.e. having a rank equal to K.

If noise has been added to the NMR FID signal, the linear dependence of the rows (or
columns) is destroyed, resulting in a data matrix with full rank, i.e. equal to min(L;M).
However, as long as the SNR of the signal is not too low, one can still de�ne a rank
being approximately equal to K. This means that a rank analysis of the data matrix
gives insight into the number of NMR components, present in the NMR FID. One way of
performing this rank analysis is to perform SVD (see next subsection).

Conclusions:

(a) The rank of a Hankel data matrix of a noiseless time-domain signal, comprising K
exponentially decaying, complex-valued, sinusoids is equal to K.
(b) If noise is present, in general the rank becomes full.
(c) If the SNR is not too low, the rank still can be approximated by K.
(d) A rank analysis of the data matrix gives insight into the number of harmonic compo-
nents.
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Figure 2.1: Plot of the singular values of a simulated time-domain signal, containing three

exponentially decaying sinusoids and computer-simulated noise. The SNR = 10.

2.4.3 Singular Value Decomposition (SVD) and rank analysis

of the data matrix

Any rectangular data matrix can be brought into diagonal form with the aid of Singular
Value Decomposition (SVD) [14], which means the following matrix factorization
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SLM = ULL �LM

V
y
MM

SLM = ULL�LMV
y
MM ; (2:6)

where ULL and VMM are the singular matrices and �LM is a diagonal matrix whose entries
are called the singular values. Furthermore, the y denotes hermitian conjugation.

It can be shown that the singular values are always � 0. Once the SVD has been
carried out according to Equation 2.6, one can immediately determine the rank of the
data matrix SLM . This can be seen as follows. Since the singular matrices U and V

are unitary matrices (i.e. they have full rank) the rank of the product ULL�LMV
y
MM is

determined by the rank of �LM . The latter, in turn, is equal to the number of singular
values di�ering from zero. From the theory of the previous subsection it follows that this
number is equal to K in case of a noiseless, exponentially decaying, time-domain signal.

When noise has been added to the time-domain data, all singular values are > 0.
However, if the SNR is not too low, one can always see a discontinuity (a jump) in the
graphical presentation of the singular values, assuming that they are plotted in descending
order. In Figure 2.1 an example of such a plot is given for the case of a simulated time-
domain signal, containing three exponentially decaying sinusoids and computer-simulated
noise. Notice that for a SNR = 10 there is a very clear distinction between the signal and
noise related singular values.

2.4.4 SVD-based signal enhancement

The SVD can be employed to enhance the SNR of the in vivo NMR FID time-domain
signals. A reason for doing such an enhancement can be that after that a noiseless signal
is obtained that may yield the same quanti�cation results for all quanti�cation methods,
available.

To realize the signal enhancement, Equation 2.6 should be cleaned, that is setting the
noise related singular values equal to zero. As a consequence of this cleaning the matrices
U , � and V should be stripped from the rows and columns, that have ceased to contribute
to the SVD. The whole process results into a truncated SVD

ST
LM = 0

ULK �K V y
MK

ST
LM = ULK�KV

y
MK; (2:7)
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where the inked boxes indicate the parts of the matrices that still are to be taken into
account in the truncated SVD. The new, cleaned, matrix ST

LM has the property that its
rank is exactly equal to K while the sum

P
jslm � sTlmj

2 is minimal. However, due to
the in
uence of the noise on the signal related singular values and vectors, the new data
matrix ST

LM has ceased to have exactly Hankel structure.

-0.4 -0.2 0 0.2 0.4
Frequency (kHz)

Original signal

1 Cadzow iteration

2 Cadzow iterations

3 Cadzow iterations

Figure 2.2: Example of a Cadzow-based signal enhancement. The FT's of the original

signal and the enhanced signals after 1, 2 and 3 Cadzow iterations are plotted. The signal

was simulated with two exponentially decaying sinusoids and computer-simulated noise.

The SNR = 5 (for the smallest peak).

It now is possible to restore the Hankel structure, while at the same time the rank
remains equal to K. To that end the following, iterative, procedure should be completed:

� Apply the truncated SVD according to Equation 2.7.

� Restore the Hankel structure by averaging the matrix elements on the anti diagonals.

� Repeate these steps until convergence has been reached.

The fact, that the second step leads to restoring the Hankel structure can be seen as
follows. Suppose, starting from the almost Hankel matrix ST

LM , that in the Least Squares

sense we want to determine a related matrix H with Hankel structure. To that end the
sum

P
jsTlm � hlmj2 needs to be minimized. Di�erentiating to the matrix elements of H

yields

X
2(sTlm � nl+mhl+m) = 0 or hl+m =

X sTlm
nl+m

; (2:8)

where we have used the Hankel property hlm = hl+m and nl+m is the number of matrix
elements on the l +m 'th anti diagonal of H.

The signal enhancement technique, just described, was proposed by Cadzow [15]. The
method was applied to simulated one-dimensional (1-D) time-domain signals in [16] and
to in vivo 31P calf muscle signals in [17]. An extension of the Cadzow method was applied
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to 2-D simulated NMR FID's in [18]. Another variation on the approach was proposed
in [19] [20], where the rank reduction and Hankel restoration is based on the Minimum
Variance (MV) estimation method.

In Figure 2.2 an example is presented of a signal enhancement, realized with the Cad-
zow method. The FT of an enhanced, simulated, time-domain signal is shown, comprising
two exponentially decaying sinusoids and computer-simulated noise. After the �rst itera-
tion step it is visible that the related frequency domain still contains more features than
two Lorentz lines. However, after three iteration steps the spectrum shows only the two
Lorentz lines. Concerning the parameters of the resulting Lorentz lines (frequency, line
width, line intensity and phase) it should be mentioned, that their values still may be
in
uenced by the noise realization, concerned.

Conclusions:

(a) Signal enhancement of in vivo NMR FID signals is feasible via truncated SVD and
Hankel restoration of the related data matrix.
(b) The procedure leads to a cleaned time domain and corresponding frequency domain,
but improvement of the related parameters is not automatically ensured.

2.4.5 Linear Prediction (LP) and SVD

In subsection 2.4.1 it was mentioned that, when applying a noniterative quanti�cation
method, the original nonlinear model function needs to be replaced by an alternative
model function, then containing exclusively linear parameters. A linear model function,
often used in the signal processing world, is the so-called Linear Prediction (LP) model.
This model amounts to assuming, that each time-domain data point can be predicted by
a linear combination of preceding or future data points. In case of backwards prediction
one can write

ŝn = q1sn+1 + q2sn+2 + : : :+ qMsn+M : (2:9)

where n = 0; 1; : : : ; N �M � 1 and usually M � K (K is the number of harmonic
components). The caret on ŝn indicates that we are dealing with a model function data
point. The coe�cients qm (m = 1; 2; : : : ;M) are called the LP coe�cients. It is important
to mention that they do not depend on n and consequently do not contain information
on the amplitudes and phases.

If no noise is present in the time-domain signal and the decay is exponential, it can
easily be shown that Equation 2.9 is exactly true. Moreover, in that case the length of
the LP equation needs not to be chosen longer than M = K. For example, for a noiseless
time-domain signal, consisting of two exponentially decaying siusoids, M = 2 is enough
to decribe the time-domain signal. For the two LP coe�cients it can be derived, that

q1 =
�1 + �2

�1�2
and q2 = �

1

�1�2
: (2:10)

Furthermore it appears, that the roots of the second-degree polynomial

�2 � q1� � q2 = 0 (2:11)
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are exactly equal to 1

�1
and 1

�2
, respectively, i.e. to the reciprocals of the signal poles.

In general, when the time-domain signal is disturbed by noise, the LP Equation 2.9
is not exactly true. However, the error that is made, can be kept small if the length of
the LP equation M � K (see [21]). Loosely speaking one could say, that by choosing
M � K additional LP coe�cients can be used to account for the noise components.
As a consequence of this choice not K but M poles need to be determined, of which K
are signal related poles and M � K are noise related poles. In matrix notation the LP
Equation 2.9 for all n can be written as

0
BBBB@
ŝ0
ŝ1
...
ŝN�M�1

1
CCCCA =

0
BBBB@
s1 s2 s3 � � � sM
s2 s3 s4 � � � sM+1

...
...

... � � �
...

sN�M sN�M+1 sN�M+2 � � � sN�1

1
CCCCA

0
BBBBBBB@

q1
q2
q3
...
qM

1
CCCCCCCA
: (2:12)
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Figure 2.3: Plot in the complex plane of 2 signal poles and 98 additional poles of a simu-

lated time-domain signal, containing two exponentially decaying sinusoids and computer-

simulated noise. Notice that the signal poles are located outside the unit circle and the

other poles inside and close to the unit circle.

Notice that the matrix has the same Hankel structure as the data matrix, introduced in
subsection 2.4.2. In order to determine the LP coe�cients qm (m = 1; 2; : : : ;M), the sumP
jsn � ŝnj2 for n = 0; 1; : : : ; N �M � 1 needs to be minimized. In practice M � 2N

3

is taken (see [21]), i.e. N �M < M . This means that we have to deal with an under
determined Least-Squares (LS) problem. It has been proven by Lawson and Hanson [14]
that the unique, so-called minimum length, solution of this LS problem is equal to

~q = VMK�
�1
K Uy

N�M;K~s; (2:13)

where the -1 on ��1K indicates the inverse of � and it is assumed that the rank of the data
matrix K � N �M . It appears that the truncated SVD helps to solve the LS problem,
concerned.
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Once the ~q vector has been determined with the procedure, just described, the poles
with among them the signal related poles, are to be calculated. It can be shown that for
an arbitrary length M of the LP equation the reciprocals of the poles are equal to the
roots of the M-degree polynomial (see above for the M = 2 example)

�M � q1�
M�1 � : : :� qM�

0 = 0: (2:14)

A problem now is that as many as M poles are determined, whereas only K poles
are related to the harmonic components and M � K to the noise. An important point
is, however, that in case of backwards prediction (see Equation 2.9) the signal poles have
a length � 1 and thus are located outside the unit circle, when plotted in the complex
plane. It can be shown [21] that the noise related poles are independent of forwards or
backwards prediction and that they are always located inside the unit circle. In practice
this property can be used to separate the signal and noise related poles (see Figure 2.3).

As a last step in the LPSVD algorithm one has to calculate the complex-valued am-
plitudes (see Equation 2.2). To that end the found signal poles are substituted into Equa-
tion 2.1 and subsequently the remaining linear LS problem is solved in one single step.
Finally, from the complex-valued amplitudes the real-valued amplitudes (line intensities)
and the phases of the sinusoids are calculated.

2.4.6 Example 1: Application of LPSVD to an in vivo
31P NMR

FID signal

In this example the quantitative data analysis is presented of an in vivo 31P NMR FID
signal of a tumour, implanted in a mouse [22]. The measurement was performed on the
7T NMR system of the Spin Imaging (SI) group of the Applied Physics Department of
the University of Technology in Delft. As quantitative data analysis method the LPSVD
approach was applied. Figure 2.4 shows the real part of the complex-valued experimental
signal, the �tted model function and the residue. The latter seems to contain only noise.

2 4 6 8 10 12 14 16
Time (ms)

a

b

c

Figure 2.4: The in vivo 31P NMR FID signal of a tumour, implanted in a mouse. Plot of

the real part of (a) the experimental signal, (b) the model function, �tted by LPSVD and

(c) the residue.
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In Figure 2.5 a graphical display is presented of the singular values of the data matrix,
concerned. It can be seen that a jump exist somewhere in the neighbourhood of singular
values #8 or #9. As a result of the low SNR this jump is not clearly visible.

name of signal �le: mouse31p.dat
number of data-points of signal: 125
step-size of signal (ms): 0:130
begin time of signal (ms): 0:390
number of data-points in LPSVD: 125
length of LP equation: 88
number of frequencies: 9
signal noise level: 0:2097E � 01
RMS error of LPSVD �t: 0:2188E � 01

Frequency 2CR Decay 2CR Amplitude 2CR Phase 2CR
kHz kHz kHz kHz a.u. a.u. degrees degrees

-1.2361 0.0094 0.3369 0.0589 0.17 0.02 -79.33 7.32
-0.5237 0.0555 0.0327 0.3486 0.01 0.02 -102.58 206.99
-0.4567 0.0487 0.3177 0.3058 0.06 0.05 -66.37 54.34
-0.1793 0.0122 0.4913 0.0764 0.36 0.05 -92.94 8.86
0.0169 0.0156 0.1123 0.0978 0.03 0.02 -56.36 35.37
0.4300 0.0079 0.2651 0.0494 0.15 0.02 -78.25 8.42
0.7341 0.0198 0.1236 0.1246 0.02 0.01 -74.24 38.18
1.3255 0.0063 0.1950 0.0393 0.12 0.02 -86.68 9.11
1.5711 0.0099 0.4139 0.0621 0.25 0.03 -116.38 6.89

Table 2.1: Numerical results of the LPSVD quanti�cation of the 31P mouse signal. The

amplitudes and phases belong to the time t = 0.
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Index singular values

Figure 2.5: Plot of the singular values of the data matrix, belonging to the 31P mouse

signal.
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The results of the quantitative data analysis are presented in Table 2.1. Notice that
the root-mean-square (RMS) error of the �tting result is about as large as the standard
deviation of the noise (the signal noise level). This numerical result is in agreement with
the fact that the graphical presentation of the residue is exclusively noisy (see Figure 2.4).
Another point to be mentioned is that the phases of certain harmonic components di�er
more than tens of degrees from the overall phase factor (the zero-order phase) of the
signal (the latter being about �830). This variation in individual phases is due to the
in
uence of the noise. Concerning the phase of the second peak in the table it can be
added that the related large statistical error indicates that this peak possibly is a noise
related component. Other indications for this are the unrealistic small decay constant
and the small amplitude (smaller than the standard deviation of the noise).

-3-2-10123
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Figure 2.6: Real part of the FT of (a) the 31P mouse signal (b) the �tted model function

and (c) the residue.

Although the results of the quanti�cation are re
ected by the time-domain parameters,
presented in Table 2.1, in practice it is often to be recommended to give a graphical
presentation of the results in the related frequency domain. In Figure 2.6 the real part of
the FT is displayed of the experimental signal, the �tted model function and the residue,
respectively. Important to be mentioned is that the FT of the residue shows no features
larger than the noise at the position of the peaks.

2.4.7 The SVD-based State Space method

A second noniterative method for quantifying in vivo NMR time-domain signals, that will
be treated in these lecture notes, is the SVD-based State Space method [23] [24]. Like
the LPSVD method, described in the previous subsection, the SVD-based State Space
method assumes that the exponential decay model can be applied. The method was
�rst published in [23] and introduced in the NMR world in [24] under the name HSVD.
Improvements of the method can be found in [25].

Although described in [23] in a State Space manner, the method will be described in
these lecture notes in the context of linear algebra. The basic idea behind HSVD is that a
Hankel data matrix of a noiseless exponentially decaying time-domain signal, comprising
K sinusoids, can be factorized as follows (see also Equation 2.1).
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Ŝ =

0
BBBB@

1 � � � 1
�11 � � � �1K
... � � �

...
�L�11 � � � �L�1K

1
CCCCA
0
BB@
c01 � � � 0
...

. . .
...

0 � � � c0K

1
CCA
0
BB@

1 �11 � � � �M�1
1

...
... � � �

...
1 �1K � � � �M�1

K

1
CCA = FLKC

0
K
~FMK;

(2:15)

where �k = exp[(��k+ i2��k)�t)] and c0k = ck�
�
k for k = 1; 2; � � � ;K and L and M should

be chosen greater than K, subject to the constraint L+M = N + 1. The matrix FLK is
a so-called Vandermonde matrix. The tilde on ~FMK denotes transposition.

We call Equation 2.15 the Vandermonde decomposition of the model function matrix
Ŝ. The essence of the State Space procedure now is that it brings about a Vandermonde
decomposition of the data matrix S as closely as possible, i.e. in the LS sense. In order
to arrive at this Vandermonde decomposition, the data matrix S is �rst subjected to
truncated SVD according to Equation 2.7. Next we state without proof [23] that the
Vandermonde decomposition of Equation 2.15 can always be transformed into a product
of matrices that have the same structure and size as the SVD matrices of Equation 2.7,
i.e.

FLKC
0
K
~FMK = ÛLK�̂KV̂

y
MK (2:16)

where the caret on the SVD matrices indicates that these matrices are related to the
model function matrix rather than to the data matrix. It can be shown that an important
property of the Vandermonde matrix FLK also is present in the related left singular vector
matrix ÛLK, albeit in a slightly di�erent form. In matrix notation this property is

FLK;t = FLK;bZK and ÛLK;t = ÛLK;bZ
0
K ; (2:17)

where the subscript t or b indicates that either the top or bottom row of the original
matrix has been removed, ZK is a K �K diagonal matrix with on its diagonal the signal
poles �k (k = 1; 2; : : : ;K) and Z 0

K is related to ZK by the diagonalization transformation.
From Equation 2.17 it is straightforward to derive that

Z 0
K = (Ûy

LK;bÛLK;b)
�1
Ûy
LK;bÛLK;t: (2:18)

If the NMR FID time-domain signal is noiseless and exponentially decaying, the ÛLK can
be replaced by ULK and the solution of Equation 2.18 is exact. However, if the signal is
disturbed by noise, or if the decay is nonexponential, or both, then replacing ÛLK by ULK

means that Equation 2.18 is solved in the LS sense.
Once the matrix Z 0

K has been computed and transformed into ZK by diagonalization,
the decay constants and the frequencies can be determined from the signal poles, present
on the diagonal of ZK . The last step in the State Space procedure then is to calculate
the real-valued amplitudes and the phases by �tting Equation 2.1 to the data points with
the decay constants and frequencies �xed to the values just found.
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2.4.8 Calculation of the SVD via the normal equations ap-

proach

Various algorithms are available for calculating the singular values and matrices of general
matrices. The computational load of the SVD of a general matrix is proportional to the
third power of the size of that matrix [26]. Thus, when the matrix at hand is large,
the processing may become prohibitively long. One way of addressing this problem is to
calculate the singular values and matrices via the normal equations approach [14]. The
essence of this approach is that the SVD is accomplished via diagonalization of the matrix
products SSy or SyS, where S is the Hankel data matrix, introduced in Equation 2.3. The
fact that diagonalyzing the above mentioned matrix products leads to the SVD quantities
can be seen as follows. If we take the matrix product SSy, we can write

SSy = U�V yV �yUy = U�2Uy or UySSyU = UyU�2UyU = �2; (2:19)

where we have used the property Uy = U�1 and V y = V �1 of unitary matrices. Further-
more, �2 represents a square, diagonal, matrix with on its diagonal the squares of the
singular values. A similar derivation can be given for the matrix product SyS.

The advantage of the method, just described, is that it is very e�cient when consider-
ing the computational time. Firstly, the time needed for calculating the matrix products
can be minimized, since one can employ the Hankel property slm = sl+m (see [26]). Sec-
ondly, if one chooses the smallest of the two products (in our case the product SSy), then
a smaller matrix has to be diagonalized than the original matrix S. A disadvantage of the
method could be that some precision might be lost when computing the matrix products.
However, in practice this e�ect is negligible since the calculations can be carried out in
double precision and moreover the data values usually have a limited number of signi�cant
digits due to the disturbance of the noise.

2.4.9 Rapid SVD of a Hankel data matrix using the Lanczos

algorithm

The problem of reducing the long computational time of SVD has been addressed, for
instance, in [26], [27], [28] and [29]. An alternative to the normal equations approach,
described in the previous subsection, is to compute only those singular values and vectors
that represent the signal and ignore all others. Such a strategy can be successfully carried
out by invoking the so-called Lanczos algorithm [27]. Theatment of this algorithm is
beyond the scope of these lecture notes. Here we restrict ourselves to describing in general
terms those points that were given attention in [29].

The main point is that the Lanczos algorithm is capable of exploiting the Hankel

structure of the data matrix, de�ned in Equation 2.3. To explain that we �rst must
reformulate the SVD of the L � M complex-valued data matrix S = S0 + iS00 as a
diagonalization of a real-valued, square, symmetric 2(L + M) � 2(L + M) matrix B,
de�ned as
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B =

S0 S00

0
�S00 S0

~S0 � ~S00

0

~S00 ~S0

: (2:20)

The matrix B is now to be diagonalized according to

B = RD ~R; (2:21)

where D is a diagonal matrix and R an orthogonal matrix. The singular values and
vectors can be found at speci�c positions in D and R, respectively. In the following we
concentrate on the diagonalization of B by means of the Lanczos algorithm, exploiting the
symmetry present in data matrix S. Note that in the actual computer implementation
the in
ation of the 1-D time-domain data into the matrix S and subsequently from S into
B was not carried out literally, so that no computer memory was wasted on this.

The gist of the Lanczos algorithm is that the matrix B is converted into tridiagonal
form by means of an iterative process, without generating intermediate and dense subma-
trices. In this process information about the larger eigenvalues can be made available long
before total conversion into tridiagonal form has been achieved. Therefore the algorithm
lends itself very well to restricting the retrieval of the eigenstructure to only the signal

part (and not the noise part) of the data matrix.
The most time-consuming part of each Lanczos iteration is the matrix-vector multi-

plication B~vj, where ~vj is a real-valued, so-called Lanczos vector of the j'th iteration and
of size 2(L +M). For notational convenience the subscript j is dropped from now on. If
~v is partitioned into four vectors ~va, ~vb, ~vc and ~vd of sizes L, L, M and M , respectively,
then the calculation of B~v is seen to amount to calculating ~S(~va + i~vb) and S�(~vc + i~vd),
where * denotes complex conjugation. Now, in order to exploit the symmetry of the data
matrix S, we note that a Hankel matrix is a submatrix of a so-called circulant matrix.
Every row of a circulant matrix is derived from the previous row by a cyclic permutation.
For the problem at hand we require an N �N circulant matrix Y whose �rst row equals
(s0; s1; : : : ; sN�1) and the cyclic permutation is to be executed from the left. By embed-
ding S� into Y � and zero-padding ~vc and ~vd up to size N , we can replace the matrix-vector
product S�(~vc + i~vd) by

Y �

 
~vc + i~vd
0 + i0

!
: (2:22)

A similar procedure can be applied to ~S(~va + i~vb). It is by writing Equation 2.22 that
the opportunity of saving computational time emerges. The underlying idea is that the
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product of a circulant matrix and a vector can be carried out very e�ciently with the aid

of FFT. By using this property, the computational burden of SVD of a Hankel matrix can
be reduced considerably. Another reduction can yet be achieved by choosing the starting
values of (~va + i~vb) or (~vc + i~vd) equal to zero. By doing so the multiplication B~v is
simpli�ed not only in the �rst iteration, but also in the subsequent ones.

Concerning the performance of the Lanczos approach, we have reported in [29] a
reduction in computational time by a factor of 80, when comparing with the normal
equations approach and by a factor of 430, when comparing with the Linpack ZSVDC
procedure. The in vivo NMR signal, concerned, comprised 15 exponentially decaying
sinusoids and the number of the data points (N) was 1024.

When considering the reduction in computational time, just mentioned, a word of
caution is in order here. If no clear distinction between signal and noise related singular
values is present, a large number of Lanczos iterations are required to obtain the smaller
singular values. As a result of that the gain in computational timemight be lost. However,
a reduction of about a factor of two (relative to the normal equations approach) is still
feasible in those cases.

2.4.10 Example 2: Application of HSVD to an in vivo
31P NMR

FID signal

In this example the HSVDmethod is applied to the same time-domain signal as of example
1 (see Figure 2.4). The goal is to �nd out to what extent the quantitative result of HSVD
di�ers from that of LPSVD. Since both methods are based on the same SVD of the data
matrix and only di�er in the way the signal poles are determined, the quantitative results
will not deviate too much.

Table 2.2 shows the HSVD result. The values of the model parameters are to be compared
with those of Table 2.1.

The two quanti�cations particularly di�er in the parameters of the components, lo-
cated in the tails of the largest component. Furthermore it is remarkable that HSVD
'chooses' as smallest component another peak than LPSVD (see Figure 2.7).
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name of signal �le: mouse31p.dat
number of data-points of signal: 125
step-size of signal (ms): 0:130
begin time of signal (ms): 0:390
number of data-points in HSVD: 125
size parameter of Hankel matrix: 88
number of frequencies: 9
signal noise level: 0:2097E � 01
RMS error of HSVD �t: 0:2206E � 01

Frequency 2CR Decay 2CR Amplitude 2CR Phase 2CR
kHz kHz kHz kHz a.u. a.u. degrees degrees

-3.5657 0.0201 0.0133 0.1266 0.01 0.01 -128.86 64.06
-1.2390 0.0101 0.3646 0.0632 0.18 0.02 -76.19 7.40
-0.4471 0.0584 0.6272 0.3667 0.13 0.07 -87.90 37.55
-0.1860 0.0199 0.5957 0.1252 0.45 0.09 -81.50 14.35
-0.0268 0.0224 0.1720 0.1410 0.04 0.03 30.35 45.68
0.4300 0.0091 0.2982 0.0573 0.16 0.02 -76.51 9.16
0.7423 0.0296 0.2164 0.1857 0.03 0.02 -80.59 38.40
1.3291 0.0067 0.2074 0.0421 0.13 0.02 -93.16 9.57
1.5662 0.0108 0.4496 0.0676 0.27 0.03 -113.17 7.14

Table 2.2: Numerical results of the HSVD quanti�cation of the 31P mouse signal. The

amplitudes and phases belong to the time t = 0.

-3-2-10123
Frequency (kHz)

a

b

c

Figure 2.7: Comparison of LPSVD and HSVD. Real part of the FT of (a) the 31P mouse

signal (b) the �tted LPSVD model function and (c) the �tted HSVD model function.
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2.5 Iterative �tting methods

2.5.1 The Maximum Likelihood (ML) method

In section 2.4 we have discussed that model function parameters, entering the model
function in a nonlinear manner, can be determined noniteratively if the model function,
concerned, can be replaced by an alternative, linear, model function. In this section we
omit this step, i.e. we work directly with the original model function. In general this
means that one has to deal with nonlinear Least Squares (LS) �tting, which may lead to
time-consuming computer algorithms.

At this point it seems in order to ask the question whether there exists a standard of

precision to which the results of any quanti�cation method should be compared. Such a
standard is indeed available, in the form of the so-called Cramer-Rao (CR) lower bounds
[13]. In order to treat this we must �rst introduce another concept, namely that of the
Maximum Likelihood (ML) method [13].

The starting point of the ML method is that there is a joint probability distribution
function for all data points of the time-domain signal, concerned.

More precisely speaking, we assume the following:

� For each data point the probability distribution function of its related noise contri-
bution is known.

� A model function is available that exactly describes the data points if no noise is
present.

An important example of a joint probability distribution function is the one, valid for
uncorrelated, Gaussian-distributed, noise

�(~s; ~�; ~p) =
N�1Y
n=0

(
1

2��2n
)

1

2

exp[
�1

2�2n
fsn � ŝn(~p)g

2]; (2:23)

where ~s is the vector of the time-domain data points, ~� is the vector of the noise standard
deviations �n (n = 0; 1; : : : ; N � 1), ŝn(~p) is the model function value, to be �tted to the
n'th data point and ~p is a vector, containing the model function parameters.

Strictly speaking, one should take the product of two distribution functions in case
of complex-valued data points, one for the real part and one for the imaginary part
(assuming, that there is no correlation between the two parts).

Given the series of data points ~s, the ML method now amounts to estimating the
model function parameters ~p in such a way that the joint probability distribution func-
tion becomes maximal. If we take the Gaussian-noise example of Equation 2.23, it is
convenient to maximize the natural logarithm of the distribution function, rather than
the distribution function itself. If it is assumed that the standard deviations of all noise
contributions are equal to �, then one obtains to maximize

constant �
1

2�2

N�1X
n=0

jsn � ŝnj
2: (2:24)
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Equation 2.24 implies that in case of uncorrelated, Gaussian-distributed, noise the ML
method in fact amounts to applying the Least Squares (LS) method.

The question now may be, why should one advocate the usage of the ML method? In
this context it should be noted, that the ML method has a number of important statistical
properties that justify advertisement:

� For a su�cient number of data points the statistical errors (the standard deviations)
of the estimated model function parameters approach certain fundamental lower
bounds, the so-called Cramer-Rao lower bounds.

� Assuming that the correct model function is used, the estimated model function
parameters have no systematic errors, i.e. they are unbiased.

� If the model function parameters are estimated with the precision of the ML method,
then derived functions of these parameters also have the ML property.

The latter point may have important consequences in practical cases. For instance, sup-
pose that the coe�cients of the Linear Prediction (LP) model function have been deter-
mined by some ML method. This means that the signal poles, obtained via factorization
of the LP polynomial, also have the ML precision.

At this point we are ready to turn to the standard of precision, mentioned at the
beginning of this subsection. It will be dealed with in the next subsection.

Conclusions:

(a) When quantifying time-domain signals with uncorrelated, Gaussian-distributed, noise,
using the Least Squares method means applying the Maximum Likelihood method.
(b) The statistical errors of the ML method approach fundamental lower bounds, the
Cramer-Rao lower bounds.
(c) If the model function, used by the ML method, correctly describes the time-domain
data points, the estimated parameters have no systematic errors.

2.5.2 The Cramer-Rao (CR) lower bounds

It can be shown that the theory of the Maximum Likelihood estimation leads to lower
bounds on the statistical errors (standard deviations) of the estimated model function
parameters [13]. The existence of such bounds, called the Cramer-Rao (CR) lower bounds,
implies that irrespective of the method used to quantify the parameters from the data,
there is a lower bound on the precision that can not be superseded. For reasons of time
and space we present in these lecture notes only a recipe for evaluating the CR lower
bounds. For a general description of the CR theory we refer to [13].

We assume the following:

� The data points of the in vivo NMR time-domain signal are described by

sn = ŝn + �n with n = 0; 1; : : : ; N � 1,

where ŝn is the model function value and �n the noise contribution of the n'th data
point.
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� The noise contribution of each data point has a Gaussian distribution function with
a mean equal to zero and a standard deviation equal to �.

� The noise contributions of successive data points are uncorrelated. There is also no
correlation between the real and imaginary part of the complex-valued data points.

The essential part of the CR theory now is to construct a so-called Fisher Information
matrix I, whose elements in case of Gaussian noise are given by

Iij =
1

�2
< [

N�1X
n=0

@ŝ�n
@pi

@ŝn

@pj
]; (2:25)

where i; j = 1; 2; : : : ; J , if there are J model function parameters to be estimated.

It can be shown that the CR lower bound on the standard deviation of the i'th
parameter is given by

�pi � CRpi =
p
I�1ii ; (2:26)

where the �1 on I�1ii indicates, that the inverse of the Fisher Information matrix should
be taken.

Equations 2.25 and 2.26 enable one to evaluate the fundamental lower bounds on the
precision of the parameter estimates. For certain simple cases one can derive closed-form
formulae that can provide useful insight. One result, agreeing with common sense, is that
for uncorrelated Gaussian noise the CR lower bounds are proportional to � (the standard
deviation of the noise).

In clinical circumstances, when performing an in vivo NMR experiment, there is no
time for repeating a measurement. This means that in practice there is no possibility of
actually determining the standard deviations of the estimated parameters. Now, if one
knows that the quanti�cation method at hand is based upon the Maximum Likelihood
principle, one can replace the unknown standard deviations by the related theoretical CR
lower bounds [30]. It should be noted, however, that Equation 2.26 contains the model
function parameters, of course. This means that calculating the CR lower bounds with
the estimated parameters only works if the values of these parameters are not deviating
too much from their true values.

The Cramer-Rao inequality, shown in Equation 2.26, works with the diagonal elements
of the inverse of the Fisher Information matrix. It should be noted, that the nondiagonal
elements of I�1 give information about the correlation between the model function pa-
rameters. For instance, in case of heavily overlapping NMR peaks (when looking in the
frequency domain) there will be large correlations between the parameters of the peaks,
concerned. Usually this also leads to large statistical errors of the parameters.

2.5.3 The Monte Carlo study

When discussing the concept of the Maximum Likelihood (ML) estimation, the question
may arise, how do we know whether our quanti�cation method at hand is a ML method?
The answer to that is that it can be tested by means of a Monte Carlo study. According
to A. Tarantola in 'Inverse Problem Theory' is [31]
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any study that uses at some stage a random generator is called a Monte Carlo study, in

homage to the famous casino.

In our case, when using the Monte Carlo study for testing some quanti�cation method
of in vivo NMR signals, the Monte Carlo study amounts to the following:

� The quantitative data analysis method, concerned, is applied to a series of simulated

time-domain signals. This means that the quanti�cation can be carried out in a
controlled way (the true parameter values are known).

� The series of simulated time-domain signals are obtained by adding to a noiseless
signal a number of (say of the order of 100) di�erent computer-generated Gaussian
noise realizations, each with zero mean and with the same standard deviation.

� All simulated signals are quanti�ed with the method, to be tested, and the mean
values and standard deviations of the model function parameters are calculated.

� The theoretical CR lower bounds of the parameters are calculated, using the true
parameter values.

� The mean estimated parameter values are compared with the true values.

� The standard deviations are compared with the CR lower bounds.

If the quanti�cation method has the ML property, the mean estimated parameters
should be equal to the true parameters and the standard deviations should be slightly
larger than the CR lower bounds.

In practice, uncorrelated, Gaussian-distributed, noise can be generated by the com-
puter. A reasonable approximation of a Gaussian distribution is obtained by using the
formula

�n = �(
12X
k=1

�kn � 6) (n = 0; 1; : : : ; N � 1); (2:27)

where �kn (k = 1; 2; : : : ; 12) are computer-generated random numbers. The subscript n on
�kn indicates that for each data point one should use another series of random values. An
eventual deviation from the Gaussian distribution can be tested by calculating the �rst,
second and fourth moment [13]. For example, a test of 10 noise realizations of 1024 data
points, generated on a Sun-3/160 workstation, yielded for the �rst, second and fourth
moment 0.00(3), 1.03(6) and 3.1(4), respectively, where the numbers in parentheses are
the standard deviations and the standard deviation of the noise was equal to 1.

2.5.4 Quantitative data-analysis methods and the threshold

signal-to-noise-ratio

For each quanti�cation method there exists a certain signal-to-noise-ratio (SNR), below
which the method can not produce the correct values of the model parameters. This
SNR is called the threshold SNR. In case of methods, based on the Maximum Likelihood
principle, it means that the standard deviations of the parameters are no longer almost
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Figure 2.8: Graphical display of log( 1
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) as a function of the SNR. The quantity var is the

variance of a certain model parameter. The line represents the dependence of the Cramer-

Rao lower bound. The solid curve shows the dependence of a Maximum Likelihood method

with a threshold SNR of about 10 dB and the dotted curve the dependence of a method

that is not based on the Maximum Likelihood principle.

equal to the Cramer-Rao lower bounds. Depending on the character of the NMR signals
concerning frequency di�erences and/or magnitudes of the NMR components it may well
be that a few NMR components are already 'below threshold' and the others not.

It is di�cult to give, in general, a mathematical description of the threshold problem.
Nevertheless, for a number of quanti�cation methods an estimation of the magnitude of
the threshold SNR is known [21]. These estimated values usually are based on Monte
Carlo studies. For instance, for SVD-based methods a threshold SNR of about 10 dB is
found, where the SNR is de�ned as

SNR = 10 log
signal power

noise variance
= 10 log

PN�1
n=0 s

�
nsn

2N�2noise
; (2:28)

where the factor 2 is required, if the real- and imaginary part of the complex-valued
noise are uncorrelated. In Figure 2.8 a schematic picture is shown of how the result of a
Monte-Carlo study would look like, if the study was aiming on determining the threshold
SNR.

One of the important aspects of studies for improving quantitative data-analysis meth-
ods is to �nd out, how the threshold SNR of those methods can be lowered. A lower
threshold SNR means, for instance, that the measurement time of the NMR experiments
can be reduced.
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2.5.5 The VARiable PROjection (VARPRO) method

A Maximum Likelihood based method, often applied in nonlinear �tting problems, is the
so-called VARiable PROjection (VARPRO) method [5]. The name refers to the fact that
the Least Squares (LS) solution of the model function parameters, concerned, projects
the vector of the data points on the column space of the related function matrix. This
projection of the data vector results from eliminating the linear parameters of the LS
problem from the gradient descent process. In case of the in vivo NMR time-domain
signals this means eliminating the complex-valued amplitudes. The advantage of this
approach is that no starting values of the linear parameters are to be supplied.

When looking at Equation 1.6, the model function for an NMR FID time-domain
signal can be generalized as

ŝn =
KX
k=1

ckfk(tn; ~pk) with n = 0; 1; : : : ; N � 1; (2:29)

where ck = ak exp(i�k) is the complex-valued amplitude, the function fk(tn; ~pk) represents
the remaining part of the model function and the vector ~pk denotes the nonlinear param-
eters of the k'th NMR component (i.e. the decay constant and the frequency in case of
the exponential decay model).

At this point it should be noted that the function fk(tn; ~pk) in general may be con-
structed from more than one basis function. Moreover, there may exist linear relations
between certain model parameters of these basis functions. For instance, in case of NMR
multiplets there are often linear relations between the line intensities, the line widths and
the frequencies of the composing multiplet components.

In matrix form Equation 2.29 can be written as

0
BBBB@
ŝ0
ŝ1
...
ŝN�1

1
CCCCA =

0
BBBB@
f1(t0; ~p1) f2(t0; ~p2) � � � fK(t0; ~pK)
f1(t1; ~p1) f2(t1; ~p2) � � � fK(t1; ~pK)
...

... � � �
...

f1(tN�1; ~p1) f2(tN�1; ~p2) � � � fK(tN�1; ~pK)

1
CCCCA

0
BBBB@
c1
c2
...
cK

1
CCCCA = F~c; (2:30)

where we have de�ned the function matrix F and the linear-parameter vector ~c (con-
structed from the complex-valued amplitudes). In order to �t the linear parameters ~c and
the nonlinear parameters ~pk (k = 1; 2; : : : ;K), the LS expression

j ~s� F~c j2 (2:31)

needs to be minimized. As said at the beginning of this subsection, the VARPRO ap-
proach amounts to eliminating the linear parameters from the gradient descent process,
i.e. eliminating the vector ~c from Equation 2.31. The latter can be e�ectuated by assum-
ing temporary, that the nonlinear parameters of the Function matrix F are known. In
that case we can write the following linear LS solution for the linear parameters

~c = (F yF )�1F y~s: (2:32)
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Replacing ~c in Equation 2.31 by Equation 2.32 yields the following expression to be
minimized in the iteration process

j(I � F (F yF )�1F y) ~s j2 = jP~s j2; (2:33)

where I is a unit matrix of the proper size and the quantity P can be shown to act as a
projection operator.

Although the linear parameters are now eliminated from the gradient descent search,
a price that has to be paid, is that the remaining LS expression is more complicated.

After �tting the nonlinear parameters of the function matrix F by minimizing Equa-
tion 2.33, the linear parameters ~c are calculated from Equation 2.32.

2.5.6 Example 3: Application of HSVD and VARPRO to 23Na

signals of the heart of a rat

In this example HSVD as well as VARPRO are applied to a series of in vivo 23Na NMR
time-domain signals of the heart of a rat. The NMR experiments were carried out in the
University Hospital of the University of Utrecht [32]. One of the goals of the experiments
was to investigate whether ischemia of the heart can be studied by 23Na NMR. It is well
known that the local concentrations of the Na+ ions play an important role in the energy
household of the living cells. Particularly the intracellular Na is important in that context.
It therefore is to be expected that the intensity of the intracellular Na NMR peak changes
under the in
uence of ischemia. This in contrast to the NMR peak of the extracellular
Na.

A serious problem in in vivo 23Na NMR investigations is that the intra- and extracel-
lular NMR lines overlap completely, i.e. they can not be detected separately. One of the
possible solutions to this problem is to employ a so-called shift reagent. The in
uence of
the shift reagent is that the chemical shift of the Na is slightly changed. Since the shift
reagent can only a�ect the extracellular and not the intracellular Na, the two NMR peaks
are more or less separated (see Figure 1.3).

In Figure 2.9 the intracellular in vivo 23Na peak is shown as function of the time,
passed after arti�cially introducing ischemia in the heart of a rat. Although the extracel-
lular peak has been shifted with respect to the intracellular peak, there is still a strong
overlap. An additional complication is that the extracellular peak is not a single line but
in fact is composed of several components. These include contributions from vascular and
interstitial spaces, as well as from the perfusate surrounding the heart.
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name of signal �le: cen11c.dat
number of data-points of signal: 1024
step-size of signal (ms): 0:100
begin time of signal (ms): 0:400
number of data-points in �t: 256
number of frequencies: 5

result of HSVD:
RMS error of �t: 0:1462E + 03

Frequency 2CR Decay 2CR Amplitude 2CR Phase 2CR
kHz kHz kHz kHz a.u. a.u. degrees degrees
-1.958 0.003 0.374 0.016 5106 156 57 2
0.443 0.007 0.290 0.044 1572 199 -7 7
0.739 0.003 0.348 0.022 28688 2879 16 6
0.765 0.000 0.106 0.002 85052 2242 -2 2
0.817 0.001 0.133 0.005 18282 969 -43 3

result of VARPRO:
RMS error of �t: 0:1482E + 03

Frequency 2CR Decay 2CR Amplitude 2CR Phase 2CR
kHz kHz kHz kHz a.u. a.u. degrees degrees
-1.958 0.002 0.375 0.014 5109 153 57 2
0.435 0.003 0.256 ***** 1448 87 0 *
0.759 0.000 0.066 0.002 36783 2011 25 3
0.761 0.001 0.255 0.007 100501 2415 1 1
0.825 0.001 0.254 0.008 24550 1587 -107 4

Table 2.3: Quantitative parameters of the last 23Na signal from the ischemia series.

0.20.30.40.50.60.7

Frequency (kHz)
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Figure 2.9: Intracellular in vivo 23Na NMR peak of the hart of a rat as a function of the

time, passed after arti�cially introducing ischemia.
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In Table 2.3 the quantitative result is shown for the last time-domain signal of the
series (the one having a waiting time of 30 minutes; see Figure 2.9). First the result of
HSVD is presented. Concerning the frequencies it can be noted, that the peak at -1.96
kHz is a reference peak, the peak at 0.44 represents the intracellular Na and the three
peaks around 0.8 kHz together form the extracellular Na. The second part of Table 2.3
shows the result, obtained by VARPRO. In this case starting values for the nonlinear
parameters were required. For this we used the values found by HSVD.

An important aspect of the VARPRO �tting procedure was that the decay constant
of the intracellular Na peak was kept �xed at a predetermined value of 0.256 Khz (the
mean value of the decay constants, found by a 'free' VARPRO round for the signals with
the 20, 25 and 30 minutes waiting time). It can be seen from Figure 2.10 that the process
of keeping the decay constant of intracellular Na �xed, clearly improves the quantitative
result for this peak. Generally speaking it can be said that exploiting prior knowledge on
the model parameters usually yields a signi�cant improvement of the quantitative data
analysis.
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Figure 2.10: Line intensity of the intracellular 23Na as a function of the waiting time. (a)

The HSVD result. (b) The VARPRO result.

2.5.7 An iterative Least Squares Gauss-Newton implementa-

tion for the exponential decay model

The fact that iterative �tting methods, like VARPRO, generally pose no restrictions on
the model functions can be very useful. However, if one wishes to entertain the exponential
decay model, then the generality of VARPRO entails that the favourable mathematical
properties of this particular model function are not exploited, which in turn amounts
to wasting computational time. One way of solving this problem would be to convert
the existing VARPRO code into a version, dedicated to exponentially decaying sinusoids.
Instead, we have chosen to devise a dedicated nonlinear (i.e. iterative) Least Squares
(LS) �tting program that uses analytical formulae pertaining exponential damping and
that is based upon Gauss-Newton minimization [11]. Another important aspect of the
�tting program is, that the updates of the model parameters in each iteration cycle are
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judged and steered on spectroscopic rather than on general mathematical principles. For
instance, a spectroscopist knows that an update of a frequency should preferably be
smaller than the width of the related spectral component (supposing that the widths are
known approximately, of course).

The starting point of the dedicated Gauss-Newton program is that we write the general
basis function fk(tn; ~pk) of Equation 2.29 as

fk(tn; ~pk) = exp[(��k + i2��k)(n+ �)�t]

with k = 1; 2; : : : ;K

and n = 0; 1; : : : ; N � 1; (2.34)

where the sampling time of the �rst data point is tbeg = ��t. An important aspect of
NMR FID time-domain signals now is that the phases of the individual sinusoids usually
are equal at the time t = 0. We therefore assume that the complex-valued amplitudes
(see Equation 2.29) can be written as ck = ak exp(�0), where �0 is the overall zero-order
phase.

In the Gauss-Newton approach one expands the model function in a Tayler series about
the current values of the nonlinear model parameters, and retains only the �rst-order
terms. In this way the nonlinear dependence on the parameters is approximated by a linear
dependence on the small updates of these parameters. In our case of the exponential decay
model, assuming that we have reasonable starting values for the nonlinear parameters, we
can write in �rst-order approximation for the basis function 2.34

exp[i(�0 +��0)] expf[�(�k +��k) + i2�(�k +��k)][n�t+ (tbeg +�tbeg)]g �
exp(i�0) [ 1 + i��0 + (��k + i2��k)�tbeg + (���k + i2���k)(n�t+ tbeg) ] fk(tn; ~pk)

;

(2:35)

where we have included the zero-order phase and ��0, �tbeg, ��k and ��k are the updates
of the various nonlinear model parameters.

Using expansion 2.35 converts the general matrix equation 2.30 into

0
BBBB@
ŝ0
ŝ1
...
ŝN�1

1
CCCCA =

�
F 0 TF 0 iTF 0 iF 0~a F 0P~a

�
0
BBBBBB@

~a

~a0

~a00

��0
�tbeg

1
CCCCCCA
= G~v; (2:36)

where
F 0 = exp(i�0)F;
T = diag (t0; t1; : : : ; tN�1);
P = diag (p1; p2; : : : ; pK) with pk = ��k + i2��k;
~a = the vector of the amplitudes ak (k = 1; 2; : : : ;K);
a0k = �ak��k and
a00k = ak2���k:

(2:37)
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For the sake of simplicity we embed exp(i�0) into the function matrix and replace F 0

by F for the remaining of this subsection. Analogous to Equation 2.32 we may write as
linear LS solution for the vector ~v

~v = [ < (GyG) ]�1 < (Gy~s ); (2:38)

where the real parts of GyG and Gy~s are to be taken since the vector ~v is real (see
Equation 2.36).

It appears that the matrix product GyG can be written in a highly structured way,
which is an advantage for the related computer implementation

GyG =

0
BBBBBB@

M0 M1 iM1 iM0~a M0P~a

M2 iM2 iM1~a M1P~a

M2 M1~a �iM1P~a
~~aM0~a �i~~aM0P~a

~~aP yM0P~a

1
CCCCCCA
; (2:39)

where M0 = F yF , M1 = F yTF and M2 = F yT 2F . Furthermore, the tilde on ~~a denotes
transposition. The left lower-triangle of GyG needs not to be given explicitly since the
product yields an hermitian matrix.

An important aspect of the current method is the presence of the exponential functions
in the matrix elements of GyG. It can be shown that the calculations of these matrix
elements merely involves the evaluation of sums of the simple form

Sumi =
N�1X
n=0

nizn (i = 0; 1; 2); (2:40)

where z are complex numbers, constructed from the products ��k�k0 , with �k and �k0 de-
noting the signal poles introduced in Equation 2.2.

For i = 0 Equation 2.40 reduces to the simple closed-form analytical expression

Sum0 =
1� zN

1 � z
: (2:41)

For i � 1 a somewhat more complicated analytical expression is obtained

Sumi =
z
Pi�1

j=0 [
�
i
j

�
Sumj ]�N izN

1� z
: (2:42)

Other closed-form expressions are given in [33] for the special case z ! 1.

As a result of the analytical expressions for the matrix elements, the calculation of
GyG requires little time. Should the decay of the NMR FID signal, concerned, be non-
exponential or should the sampling times be nonuniform, then the computation of GyG

becomes a burden.
Another acceleration of the computational speed can be obtained by using the rela-

tion fk(tn+1; ~pk) = �kfk(tn; ~pk) in calculating the product Gy~s in Equation 2.38. Again
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this acceleration is exclusively possible for the exponential decay model and for uniform
sampling.

2.5.8 Imposing linear relations on model parameters (Prior

Knowledge) in the Gauss-Newton program

Another important property of the dedicated Gauss-Newton based program, described in
the previous subsection, is that linear relations between model parameters of the same
type can be imposed rather easily. These linear relations between parameters often occur
in NMR spectroscopy and can be considered as important spectral prior knowledge. For
instance, in case of NMR multiplets there may be relations between the amplitudes, the
decay constants or the frequences of the multiplet components. Also the fact that at t = 0
the phases of the NMR harmonic components may be equal to an overall zero-order phase
can be considered as prior knowledge.

Introducing linear relations between model parameters in the Gauss-Newton �tting
program is based upon the special structure of the matrix-vector multiplication of equa-
tion 2.36. Working out this multiplication shows that the linear relations simply can be
imposed by introducing corresponding linear relations in the related columns of the func-
tion matrix F . This introduction results in a reduction of the size of the matrix-vector
multiplication (see Figure 2.11).

In the software of the computer implementation the above mentioned spectral prior
knowledge is introduced by using two special 1-D-arrays, an integer-array KPRIOR(I) and
a real-array APRIOR(I) (I = 1; 2; : : : ; 3K, withK being the number of NMR components).

The integer-array KPRIOR contains integer numbers, denoting the type of spectral
prior knowledge. We distinguish:

� 0 : The parameter of the harmonic component, concerned, is �tted without knowing

a linear relation with a parameter of the same kind of any other component.

� -1 : The parameter of the harmonic component, concerned, acts as reference param-

eter for the corresponding parameter of one or more related harmonic components.

� n : The parameter of the harmonic component, concerned, has a linear relation with
the corresponding parameter of the n'th harmonic component.

� -2 : The parameter of the harmonic component, concerned, is kept constant during
the �tting process at a predetermined value.

The real-array APRIOR contains real numbers, indicating the values of the linear
relations, concerned. We thereby distinguish �xed ratios of amplitudes or decay constants
and �xed di�erences between frequencies.

An example of the contents of the arrays KPRIOR and APRIOR, used for real-world
in vivo NMR FID signals, is presented in Table 2.4. The linear relations, concerned, are
often used for the multiplet components of the ATP molecule in the in vivo NMR FID
signals of the 31P nucleus (see also the example in the next subsection).
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=)

Figure 2.11: Reduction of the size of the matrix-vector multiplication G~v due to a linear

relation between two model parameters.

Nr. KPRIOR APRIOR KPRIOR APRIOR KPRIOR APRIOR
(1 - K) (1 - K) (K+1 - 2K) (K+1 - 2K) (2K+1 - 3K) (2K+1 - 3K)

1 -1 1.00 -1 1.00 -1 0.000
2 1 2.22 1 1.00 1 0.016
3 1 1.27 1 1.00 1 0.032
4 1 2.40 -1 1.00 -1 0.000
5 1 2.07 4 1.00 4 0.016
6 1 2.33 -1 1.00 -1 0.000
7 1 2.13 6 1.00 6 0.016
8 0 0.00 0 0.00 0 0.000
9 0 0.00 0 0.00 0 0.000
10 0 0.00 0 0.00 0 0.000

Table 2.4: Example of the contents of the arrays KPRIOR and APRIOR. The prior

knowledge, concerned, is often used for the multiplet components of the ATP molecule in

the in vivo NMR FID signals of the 31P nucleus. From the table it can be seen, that the

amplitudes of components 1,2,3,4,5,6 and 7 are in the proportion of 1 : 2.22 : 1.27 : 2.40

: 2.07 : 2.33 : 2.13. Furthermore it appears, that the decay constants of the harmonic

components 1,2 and 3, of 4 and 5 and of 6 and 7 are equal. Finally it can be seen, that

the frequency di�erences of components 1, 2 and 3, of 4 and 5 and of 6 and 7 are equal

to 0.016 kHz. It should be noted that the above mentioned prior knowledge is valid for a

constant magnetic �eld of 1.5 T.
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2.5.9 Example 4: Application of the Gauss-Newton program

to an in vivo
31P NMR FID of calf muscle

In this example the Gauss-Newton based �tting program is applied to an in vivo 31P
NMR FID signal of calf muscle. The experiment was carried out on a whole-body 1.5 T
MRI/MRS system of Philips Medical Systems in Best.

Typical of in vivo 31P NMR calf muscle spectra is that the NMR lines are rather
narrow, as can be inspected in Figure 2.12. In this �gure the quanti�cation results are
presented for �tting without and with prior knowledge on the ATP multiplets. The prior
knowledge, used for ATP, is the same as given in Table 2.4.

In Table 2.5 the numerical results for the 31P calf muscle signal are listed. It can be
noticed, that the errors of the ATP parameters (two times the Cramer-Rao lower bounds)
are much smaller as a result of applying the spectral prior knowledge. Particularly, the
results for the �-ATP triplet are improved. It should also be noticed, that in this example
the zero-order phase as well as the begin time were �tted.

-1.5-1-0.500.511.5
Frequency (kHz)

a

b

c

Figure 2.12: In vivo 31P NMR of calf muscle. (a) Spectrum of the experimental signal. (b)

Spectrum of the �tted model function without using prior knowledge on ATP. (c) Spectrum

of the �tted model function with using prior knowledge on ATP. The quanti�cation was

carried out with the Gauss-Newton based �tting program.
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name of signal �le: testcalf.dat
number of data-points of signal: 1024
time step of signal (ms): 0:333
starting value of phzero (degrees): 200
starting value of begin time (ms): 0:133
number of data-points of �t: 512
index of �rst data-point: 5
number of peaks of �t: 10
number of iterations of �t: 35

(a)

Frequency 2CR Decay 2CR Amplitude 2CR Phase
kHz kHz kHz kHz a.u. a.u. degrees

-0.4402 0.0014 0.0178 0.0135 3.27 1.83 0.00
-0.4234 0.0008 0.0270 0.0085 11.29 2.99 0.00
-0.4059 0.0016 0.0410 0.0166 10.30 3.46 0.00
-0.2118 0.0005 0.0256 0.0052 14.87 2.32 0.00
-0.1954 0.0006 0.0250 0.0060 12.25 2.29 0.00
-0.0815 0.0005 0.0227 0.0054 11.51 2.06 0.00
-0.0634 0.0007 0.0260 0.0068 11.19 2.21 0.00
-0.0112 0.0000 0.0142 0.0004 79.72 1.49 0.00
0.0659 0.0010 0.0204 0.0097 5.12 1.77 0.00
0.1145 0.0008 0.0265 0.0077 9.54 2.03 0.00

phzero 2CR tbegin 2CR
degrees degrees ms ms
205.75 0.73 0.267 0.029

(b)

Frequency 2CR Decay 2CR Amplitude 2CR Phase
kHz kHz kHz kHz a.u. a.u. degrees

-0.4395 0.0006 0.0285 0.0044 5.43 0.34 0.00
-0.4235 0.0006 0.0285 0.0044 12.06 0.76 0.00
-0.4065 0.0006 0.0285 0.0044 6.90 0.43 0.00
-0.2118 0.0004 0.0228 0.0028 13.04 0.82 0.00
-0.1958 0.0004 0.0228 0.0028 11.24 0.71 0.00
-0.0807 0.0005 0.0271 0.0036 12.66 0.80 0.00
-0.0647 0.0005 0.0271 0.0036 11.57 0.73 0.00
-0.0112 0.0000 0.0142 0.0004 79.59 1.51 0.00
0.0659 0.0011 0.0202 0.0097 5.09 1.77 0.00
0.1146 0.0008 0.0270 0.0078 9.66 2.06 0.00

phzero 2CR tbegin 2CR
degrees degrees ms ms
205.74 0.74 0.229 0.030

Table 2.5: Numerical results of the Gauss-Newton quanti�cation of the 31P calf muscle

signal. (a) Without using prior knowledge on ATP. (b) With using prior knowledge on

ATP.
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2.6 Quanti�cation of two-dimensional (2-D) in vivo

NMR time-domain signals

2.6.1 Introduction
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Figure 2.13: (a) Example of a 2-D NMR experiment (see text). The other �gures show

the magnetization (b) just after the �rst pulse, (c) just before the second pulse, (d) just

after the second pulse and (e) just after the third pulse.

When describing the NMR FID and spin-echo experiments, we implicitly have used that
the related time-domain signals are a function of only one discretely changing time vari-
able. One speaks of a one-dimensional (1-D) measurement. In general, NMR experiments
can be carried out in more than one dimension. Especially the two-dimensional (2-D)
experiments, in which two time variables are changed, are often applied in NMR spec-
troscopy [34]. At present, many variations on the 2-D NMR experiment are known. Most
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of them have in common, that they are based on transfer of magnetization from one
nucleus to another.

In order to get an idea of the principle of 2-D NMR spectroscopy we consider the
following example. In the sample, to be investigated by NMR, there are supposed to
exist two non-equivalent nuclei A and B in each others neighbourhood. Suppose, that
the two nuclei can exchange chemically, i.e. nuclues A can take the place of nucleus B
and vice versa. We follow the behaviour of the magnetization of nucleus A in the rotating
frame, when three 900 r.f. pulses are given, the �rst and second pulse along the x-axis
and the third one along the -x-axis. Just after the �rst 900 pulse the magnetization
vector is aligned along the y-axis (see Figure 2.13). In the time t1 between the �rst and
second pulse the magnetization makes a precession over an angle (2��At1), where �A is
the precession frequency of nucleus A. Just after the second pulse the magnetization is
located in the xz-plane (see Figure 2.13), with its x- and z-component being proportional
to sin(2��At1) and � cos(2��At1) , respectively. Now, as a consequence of applying a
magnetic �eld gradient in the time between the second and third pulse, the x-component
of the magnetization is destroyed. i.e. only the z-component remains. After the third
pulse, now being applied along the -x-axis, an FID is detected as a function of a second
time t2, and being proportional to cos(2��At1) .

Essential in this simple description with magnetization vectors now is the assumption,
that due to chemical exchange a number of nuclei of type A and B have changed their
mutual positions. As a result a fraction of the FID signal, coming from nucleus A, will
be modulated by cos(2��Bt1) , and vice versa. This means that a 2-D signal s(t1; t2)
is obtained if the measurement is repeated as a function of the �rst time t1. A two-
dimensional DFT of the signal s(t1; t2) yields a 2-D spectrum, with 2-D peaks located
at positions (�A; �A), (�B; �B), (�A; �B) and (�B; �A). The two latter peaks are called the
cross peaks. The presence of these cross peaks is a direct prove that the chemical exchange
has taken place (see Figure 2.14).

In the simple example, just described, the transfer of magnetization from one nucleus
to the other was based upon chemical exchange. However, transfer of magnetization is
also possible via other processes, such as via scalar magnetic interaction (J-coupling) or
via magnetic dipole-dipole interaction. The presence of the cross peaks then proves the
occurrence of the corresponding interaction. In case of the magnetic dipole-dipole interac-
tion the intensity of a cross peak is proportional to 1

r6
, where r is the distance between the

interacting nuclei. Quanti�cation of the 2-D cross peaks then yields information about
the value of r.

The following applications of 2-D NMR spectroscopy can be mentioned:

� Separation of overlapping peaks (when compared to the corresponding 1-D spec-
trum).

� Supply of information about the type and magnitude of the magnetic interactions
between the nuclei, present in the sample.

In practice, the 2-D NMR is particularly employed for giving help in the structure
determination of large molecules (e.g. proteins). In the in vivo NMR world the 2-D spec-
troscopy is only applied on a limited scale, probably due to the length of the measurement
time.
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Figure 2.14: Contour plot of a 2-D NMR spectrum.

2.6.2 Examples of 2-D NMR time-domain model functions

Depending on the nature of the 2-D NMR experiment, concerned, various 2-D time-
domain model functions may be required for describing the 2-D data sets.

As a �rst example, we consider the 2-D analogue of the 1-D NMR FID model function
(see Equation 2.1; We assume for the sake of simplicity, that the begin time in both
dimensions is equal to zero.)

ŝnm =
KX
k=1

K0X
k0=1

�nk ckk0�
0
k0
m
; (2:43)

where
n = 0; 1; � � � ; N � 1,
m = 0; 1; � � � ;M � 1,
ckk0 = akk0 exp(i�kk0),
�k = exp[(��k + i2��k)�t)] and
� 0k0 = exp[(��0k0 + i2��0k0)�t

0)].

In matrix notation, Equation 2.43 may be written as

Ŝ =

0
BBBB@

1 � � � 1
�11 � � � �1K
... � � �

...
�N�11 � � � �N�1K

1
CCCCA
0
BB@

c11 � � � c1K0

... � � �
...

cK1 � � � cKK0

1
CCA
0
BB@

1 � 01
1 � � � � 01

M�1

...
... � � �

...

1 � 0K0

1 � � � � 0K0

M�1

1
CCA ; (2:44)

or

Ŝ = FNKCKK0

~F 0
MK0 : (2:45)

It is of importance to note that the rank of the matrix Ŝ is equal to min(K;K 0). This
implies, that in case of K 6= K 0 the SVD of the related experimental 2-D data matrix
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can not yield the correct number of singular values for the dimension with the highest
number of spectral components and that consequently the correct signal poles can not be
determined for that dimension. In subsection 2.6.3 we will present a workaround for this
2-D rank problem.

∆

Figure 2.15: Pulse sequence of a 2-D NMR experiment for measuring the longitudinal

relaxation times of individual metabolites (see text).

A second example of a 2-D model function concerns the measurement of the longitu-
dinal relaxation time T1 (see Equation 1.1). In Figure 2.15 the pulse sequence for such
an experiment is shown. The experiment can be described as follows: Starting from the
Boltzmann equilibrium (magnetization along the z-axis), the magnetization is inverted
by means of a 1800 r.f. pulse. Subsequently a time t1 is waited, so that the magnetization
can return towards equilibrium via the mechanism of the longitudinal relaxation. After
the time t1 a second r.f. pulse is given, now with a rotation angle of 900. This results in
an FID with its magnitude being proportional to

[1� 2 exp(�t1
T1
)].

If the measurement is carried out as a function of the delay time t1, a 2-D time-domain
signal is obtained that can be described by the following 2-D model function

ŝnm =
KX
k=1

ck[1� 2 exp(
�n�t0

T1k
)]�m+�

k ; (2:46)

where n = 0; 1; : : : ; N � 1, m = 0; 1; : : : ;M � 1, �k = exp[(��k + i2��k)�t] and ��t is
the begin time of the FID.

Equation 2.46 is exactly true if the �xed time tfix between succeeding 1800�900 pulse
sequences is taken long compared to the longitudinal relaxation times T1k. In practise this
means, that the measurement time becomes too long. Therefore the time tfix is taken too
short, which introduces the need for a correction term in the 2-D model function. The
new, corrected, 2-D model function is

ŝnm =
KX
k=1

ckf1 � [2� exp(�
tfix

T1k
)] exp(

�n�t0

T1k
)g�m+�

k : (2:47)

Notice, that Equation 2.47 changes into Equation 2.46 for tfix �!1.
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2.6.3 The 2-D version of the SVD-based State Space method

In the previous subsection it was reported, that a rank problem exists for the SVD of the
2-D data matrix, related to the 2-D FID experiment (see below Equation 2.45).

Recently we have found a way of working around this problem [35]. The essence of
the solution is that a block matrix of the form

H = (H0H1 : : :HN�1) (2:48)

is used, with Hn(n = 0; 1; : : : ; N � 1) being matrices with Hankel structure, constructed
from each row of the experimental 2-D data matrix. Notice, that all data points are
contained in H. It can be shown that the number of singular values of H corresponds to
K 0, i.e. the number of harmonic components in the primed dimension. This implies that
the primed signal poles are obtained from the left singular vector matrix of matrix H.
Subsequently, transposition of the data matrix and repetition of the procedure yields the
signal poles for the unprimed dimension. Finally, the real-valued amplitudes and phases
follow from a same linear Least Squares �tting procedure as applied in the 1-D FID case.

2.6.4 Example 5: Application of 2-D HSVD to a 2-D in vivo

1H FID of the brain of a rat

In 1H NMR spectra of compounds, dissolved in protonated solvents such as water, often
serious problems are encountered due to the high concentration of the solvent protons
[36]. If solvent signals are to be suppressed one can choose between applying experimental
methods that operate prior to data acquisition or o�-line methods that are based upon
using software techniques [37].

In multidimensional NMR the solvent signal may not be so large a problem as in 1-D
NMR since the cross peaks of interest may be located well away from the solvent region.
Nevertheless, there may be a need for solvent signal suppression. This is especially true
for in vivo 1H spectroscopy on selected regions of humans or animals where the solvent,
i.e. the water, is to be suppressed AND localized at the same time. Another complicating
aspect of in vivo localized spectroscopy is that there are various mechanisms leading to
additional line broadening.

In this example we present the results of addressing the 2-D HSVD approach, described
in the previous subsection, to a 2-D in vivo 1H FID of the brain of a rat. The experiment
was carried out in the 'Groupe d'Application de la RMN a la Neurobiologie' of M. Decorps
at the University Joseph Fourier in Grenoble. The data matrix, concerned, comprised
256�128 data points. In order to �t the proton signals, coming from the water as well as
from the other molecules, the number of model function components was chosen to be 100
in the unprimed and 30 in the primed dimension. After the �tting process the 2-D model
function components, whose frequencies were located in the water region, were subtracted
from the time-domain data matrix. The result of the water suppression can be inspected
by looking at the contour plots, displayed in Figure 2.16. The contours, shown, represent
the level at 0.17% of the maximum of the uncleaned 2-D spectrum. The frequencies in
both dimensions were normalized, i.e. assuming that the sample steps are equal to one.
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Figure 2.16: Contour plots of a 2-D in vivo 1H spectrum of the brain of a rat. The upper

picture shows a dominant water peak in the (0,0) region and the bottom picture a reduced

peak in that region. The latter is the result of applying the 2-D HSVD procedure.

2.6.5 Example 6: Application of a 2-D version of the Gauss-

Newton program to an in vivo
31P longitudinal relaxation

experiment of a human brain

In this example a 2-D version of the Gauss-Newton program is applied to an in vivo 31P
longitudinal relaxation experiment of a human brain. The experiment was carried out on
a 1.5 T whole-body MRI/MRS system of Philips Medical Systems in Best.

In Figure 2.17 the cosine DFT of the FID is displayed as a function of the delay time t1
between the 1800 and 900 pulse. In addition, in Figure 2.18 the amplitude of an individual
NMR component is shown as a function of t1, namely that of the PCr metabolite. The
curvature of the latter indicates that the relaxation behaviour can be described by a single
exponential function, i.e. by one T1 value.

In order to determine the parameters of the FID's as well as the T1 values of the
individual metabolites, the 2-D model function of Equation 2.47 was �tted to the data
points of all FID's. For the �xed time tfix a value of 3 s was taken in the �tting process.
Furthermore, prior knowledge on the spectral parameters of the ATP multiplets was
exploited.
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Figure 2.17: Spectrum of a proton-decoupled in vivo 31P FID of a human brain as a

function of the delay time t1 between the 1800 and 900 pulse of a T1 experiment.
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Figure 2.18: Amplitude of the PCr-component as a function of the delay time t1.
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Component Amplitude CR T1 (s) CR
�-ATP 4.56 0.11 0.64 0.05
DPDE 2.82 0.58 3.9 1.3
�-ATP 4.55 0.11 0.61 0.03

-ATP 4.54 0.11 0.67 0.04
PCr 6.55 0.17 3.17 0.14
PDE 29.2 2.1 1.06 0.06
GPC 2.00 0.32 4.7 1.1
GPE 1.71 1.4 12. 12.
Pi 2.42 0.21 2.16 0.32

PME 5.36 0.43 3.13 0.43

Table 2.6: The 'overall' amplitudes and the longitudinal relaxation times of the various

components of the in vivo 31P FID.

The results of the 2-D quanti�cation are listed in Table 2.6. It is interesting to see,
that the T1's of the three ATP multiplets are equal to each other (within the standard
deviations). Moreover it is remarkable, that the shortest and longest relaxation time di�er
by an order of magnitude.
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Chapter 3

Magnetic Resonance Imaging

(MRI) and Spectroscopic Imaging

(MRSI)

3.1 Introduction

So far, in these lecture notes the issue of quanti�cation was reserved to quantitative data
analysis of Magnetic Resonance Spectroscopy (MRS) signals. That is to say, signals
containing information about the spectral properties of the molecules (metabolites), con-
tributing to the NMR signal. This in contrast to Magnetic Resonance Imaging (MRI)
signals, which contain information about the spatial properties of the metabolites (e.g.
about their concentrations as a function of the positions in a selected slice of a human
body).

Since a number of years a method exists that combines the properties of spectroscopy
AND imaging. The method is called Magnetic Resonance Spectroscopic Imaging (MRSI).
During the MRSI experiment spectral coding as well as spatial coding is applied. As a
result, after carrying out the proper signal processing and quanti�cation steps, one can
reconstruct images of individual metabolites. An application for metabolite images, for
instance, is the image of the NAA molecule in the human brain. This metabolite can be
considered as a marker for the brain cells. A low intensity in the NAA image may indicate
a certain brain damage.

On the hand of the NAA example it may be clear that metabolite imaging via the
MRSI method may become an important diagnostic tool in clinical situations. In order to
understand the MRSI method, in the next section �rst the basic principle of the traditional
MRI method will be addressed. Then, in the next section the essence of MRSI will be
discussed. Further, in the succeeding section some signal processing aspects of real-world
MRSI signals will be described. Finally, in the last section of this chapter an alternative
way of writing the MRSI equation will be treated.

3.2 Basic principle of MRI

The basic principle of the MRI method will be addressed on the hand of Figure 3.1. In
this �gure the pulse sequence of a simpli�ed MRI experiment is shown.
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The spatial coding, needed for MRI, is obtained via the use of magnetic �eld gradients.
First, a slice at height z and thickness dz of the in vivo object is selected. This is done by
means of a selective 900 r.f. pulse, combined with a z-gradient. Next, the spatial coding
for the x-direction is obtained by means of an x-gradient. The latter is changed with
discrete steps during a �xed time tx. Finally, the spatial coding for the second direction,
i.e. the y-direction, is obtained by means of an y-gradient. This gradient is not stepped,
but has a �xed value during the acquisition of the FID data (in the time tx to tx + ty).

tx0 tx + ty

90
0

Gz

Gx

Gy

FID

Figure 3.1: Pulse sequence of a simpli�ed MRI experiment.

After this qualitative explanation we now will give a quantitative description. We
suppose, that at position (x; y; z) and time t a resulting magnetic �eld is present, that in
the rotating frame is given by

~B(x; y; z; t) = [B0 +
!



+Gx(t)x+Gy(t)y +Gz(t)z] ~uz +B1(t) ~ux: (3:1)

During the time 0 to tx only the x-gradient is switched on. If the rotating frame
precesses with an angular velocity�
B0, the angular velocity of the k-th NMR component
in that rotating frame is equal to

�!k = ! � !0k = 
Gxx(1� �k)� 
B0�k: (3:2)

We now suppose that the e�ect of the chemical shift can be neglected with respect to
that of the x-gradient. In that case the equation for the angular velocity reduces to

�!k = 
Gxx: (3:3)

During the acquisition of the FID in the time tx to tx+ty only the y-gradient is swiched
on, which in the same way leads to an angular velocity 
Gyy. The �nal consequence of
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the pulse sequence is, that at time tx + ty the FID signal of the k'th NMR component,
coming from a volume element dxdydz of the selected slice, can be written as

sk(tx + ty) = �k(x; y; z) dxdydz exp[��k(tx + ty) + i
(Gxxtx +Gyyty)]; (3:4)

where �k(x; y; z) is the density and �k the decay constant of the k'th component. The
total signal, coming from the selected slice, follows after summation over all components
and integration over the slice

s(tx + ty) =
KX
k=1

Z
x

Z
y
�k(x; y; z)dz exp[��k(tx + ty) + i
(Gxxtx +Gyyty)] dxdy: (3:5)

Equation 3.5 can be written in a slightly di�erent way by introducing the so-called
k-domain parameters

kx = 
Gxtx and ky = 
Gyty: (3:6)

If only one NMR component is taken into account (e.g. the water component), the
e�ect of the decay is neglected and the index k, the slice height z and slice thickness dz
are dropped from the formula, Equation 3.5 reduces to

s(kx; ky) /
Z
x

Z
y
�(x; y) exp[i(kxx+ kyy)] dxdy: (3:7)

The last step in obtaining an MRI of the water protons in the selected slice is to
perform a 2-D Fourier transformation from the 2-D k-domain to the spatial domain

S(x0; y0) /
R
kx

R
ky

R
x

R
y �(x; y) exp[i(kxx+ kyy)] exp[�i(kxx0 + kyy

0)] dxdy dkxdky

/ �(x0; y0):
(3:8)

Notice, that the �eld of view (the maximum length of x and y in the selected slice)
is determined by the Nyquist theorem. This yields the requirement 
Gyymax�ty � � for
the sampling step �ty during the acquisition of the FID data.

3.3 Basic principle of MRSI

In this section the basic principle of the MRSI method will be described. Again this will
be done on the hand of a simpli�ed NMR pulse sequence, as can be seen in Figure 3.2.

During an MRSI experiment there are two aspects that clearly di�er from the MRI
experiment:

� Since the issue is to make an image of other molecules (not water but the metabo-
lites), the signal coming from the water protons should be suppressed. Today, several
experimental methods are available to achieve this.
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tx0 tx + ty tx + ty + t

90
0

Gz

Gx

Gy

FID

Figure 3.2: Pulse sequence of a simpli�ed MRSI experiment.

� Spectral coding should be added to the pulse sequence of the traditional MRI ex-
periment. This is done by performing the acquisition of the FID data in a period,
during which no magnetic �eld gradients are switched on.

When comparing Figures 3.1 and 3.2, it can be concluded, that in case of the MRSI
experiment Equation 3.7 changes into

s(kx; ky; t) /
KX
k=1

Z
x

Z
y
�k(x; y) exp[i(kxx+ kyy)] exp[(��k + i�!k)t] dxdy; (3:9)

where �!k = �
B0�k (see Equation 3.2).

That is to say, there is now a summation over the metabolite components AND the
FID term, obtained by the data-acquisition in the period tx + ty to tx + ty + t, has been
added.

After 2-D Fourier transformation from the k-domain to the spatial domain, the �nal
result is

S(x; y; t) /
KX
k=1

�k(x; y) exp[(��k + i!k)t]; (3:10)

where, for the sake of simplicity, we have dropped the � of the angular frequency. The
important result of this signal is that the amplitudes of the individual metabolite com-
ponents depend on (x; y). Furthermore it should be noted, that Equation 3.10 is derived,
as if phases play no role. In real-world signals they generally do play a role.
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If one succeeds in quantifying �k(x; y) as a function of (x; y), the image of the metabo-
lite, concerned, has been determined. A way of doing that is to perform a 1-D Fourier
transformation from the time domain to the frequency domain and to integrate the area
of the related NMR peak. In these lecture notes, however, we choose to quantify the
densities by means of �tting of the time-domain signals. This is demonstrated in the next
section.

3.4 Example 7: Application of time-domain �tting

techniques to in vivo
1H MRSI signals

In this section the Gauss-Newton and the HSVD program are applied to 1H MRSI data
sets, measured on human brains. The experiments were performed on a whole-body 1.5T
MRI/MRS system of Philips Medical Systems in Best.

A typical MRSI data matrix has a size of 32 � 32 � 1024 data points, i.e. 32 � 32
k-domain steps and 1024 time-domain steps. The 2-D k-domain is sampled symmetrically
around zero in the following way: ki = ni�ki (ni = �16; : : : ; 0; : : : ; 15) (i = x; y). The
time domains of the 1H signals usually are echoes and not FID's. The acquisition of the
1024 time-domain echo points often is such that the top of the echo is near point 234.

-200-180-160-140-120-100-80
Frequency (Hz)

Figure 3.3: Absolute-value 1H spectra, coming from a series of voxels in a selected slice of

a human head. The three peaks are due to Choline, Creatine and NAA (going from left

to right).

In Figure 3.3 a number of absolute-value spectra are displayed, coming from a series
of voxels in a selected slice of a human head. It can be seen that the o�set frequency of
the spectra changes as a function of the voxels. At this point it is not clear, whether these
changes are due to the inhomogeneity of the main magnetic �eld or due to susceptibility
e�ects of the living object (or both).

As a consequence of the o�set variations it is di�cult to determine the peak areas of
neighbouring peaks by means of frequency-domain integration with only one integration
region. One way of solving this problem is to carry out the quanti�cation in the time
domain and to �t the frequency changes [37]. Another way is to perform a separate
reference measurement on the unsuppressed water signal with the same pulse sequence
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as is used for the MRSI measurement and to use the unsuppressed water proton echoes
for correcting for the magnetic �eld strength 
uctuations [38]. The latter approach is
based on a paper by Ordidge and Cresshull [39]. An additional advantage of applying the
Ordidge & Cresshull correction is that also voxel-dependent phase variations are taken
into account.

Another aspect of working with real-world in vivo 1H MRSI data sets is the presence
of unwanted, overlapping, broad background features. These features may arise from
various sources, such as from water or lipid signals. Before quantifying the 1H echoes by
means of a nonlinear Least Squares �tting procedure it may be worthwhile to remove the
overlapping features with an SVD-based method. In Figure 3.4 an example is given of
such a procedure. The second half of the echoes, concerned, were �tted with the HSVD
method. After the �tting, the exponential decaying sinusoids with frequencies in the lipid
region were subtracted from the time-domain echo signals. It can be seen from Figure 3.4
that the neighbouring NAA peak is separated from the lipid signal by this procedure [38].
A same approach can be applied to dominating signals in the water region [37].

-350-300-250-200-150-100-50
Frequency (Hz)

Figure 3.4: Removal of overlapping lipid signal by means of the HSVD method. The

upper picture showns the original spectrum and the lower picture the cleaned spectrum.

The remaining peaks are due to the protons in Choline, Creatine and NAA, respectively.

In order to reconstruct the metabolite maps from the 32� 32� 1024 MRSI data sets,
the following signal processing and quantitative data-analysis protocol may be convenient:

� Transformation from the k-domain to the spatial domain by 2-D FFT.

� Correction for the voxel-dependent frequency- and phase variations by the Ordidge
& Cresshull approach [38] [39].

� Reduction of the number of data points to the second half of the echoes, in order
to obtain FID-like time-domain signals.

� Removal of unwanted, overlapping, background features by means of the HSVD
method [37] [38].

� Quanti�cation of the resulting, cleaned, echoes with the Gauss-Newton �tting pro-
gram [11] [33] [40].
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� Calculation of the metabolite maps from the time-domain amplitudes, obtained in
the previous step.

� Increasing the �nal size of the metabolite maps from 32� 32 to 128� 128 by means
of cubic-spline interpolation in the spatial domain [37].

In Figures 3.5 and 3.6 examples of the images of NAA and Choline are shown, as
obtained from frequency-domain integration and time-domain �tting (with the Gauss-
Newton program). They belong to a selected slice in the head of a healthy volunteer.
Concerning the time-domain �tting aproach it is important to mention, that in this case
the whole echoes were �tted [40] (i.e. not only the second half of the echoes [37]). Using the
whole echoes may be important for MRSI data sets having a poor SNR of the metabolite
maps.

a b

NAA

Figure 3.5: Metabolite image of NAA, as obtained from (a) frequency-domain integration

and (b) time-domain �tting.

3.5 An alternative way of writing the MRSI equa-

tion

Transforming Equation 3.9 into Equation 3.10, in order to arrive at the �nal MRSI equa-
tion, was based upon integrating over the whole slice and 2-D Fourier transformation from
the k-domain to the spatial domain.

Alternatively, we may consider the selected slice as being partitioned into a �nite,
discrete set of adjoining rectangular parallelepipeds, with edges �x and �y in the slice
directions, placed on a rectangular grid at positions (x; y) (again we do not take into
account the z-direction aspects). Within each parallelepiped the density of any substance
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a b

Cho

Figure 3.6: Metabolite image of Choline, as obtained from (a) frequency-domain integra-

tion and (b) time-domain �tting.

(metabolite) �k(x; y) is assummed to be constant. Then, integrating Equation 3.9 over
one parallelepiped yields

s(kx; ky; t) /
KX
k=1

�k(x; y) exp[i(kxx+kyy)] sinc(
1

2
kx�x)sinc(

1

2
ky�y) exp[(��k+i�!k)t]:

(3:11)
We now suppose, that there is a certain sampling strategy with L = Nkx � Nky

k-domain steps and N time-domain steps.
If there areM parallelepipeds located within the in vivo object, the total signal coming

from the selected slice can be now expressed as a product of three matrices, i.e.

s(t; l) /
KX
k=1

MX
m=1

Z(t; k)P (k;m)	(m; l); (3:12)

where Z(t; k) is an N �K Vandermonde matrix, representing the time evolution of the
NMR signal of each metabolite

Z(t; k) =

0
BBBB@
� t01 � t02 � � � � t0K
� t11 � t12 � � � � t1K
...

... � � �
...

�
tN�1

1 �
tN�1

2 � � � �
tN�1

K

1
CCCCA ; (3:13)

in which the �k are the signal poles, containing the spectral information and t0; t1; : : : ; tN�1
denote the sampling times.
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The matrix P (k;m) is a K�M matrix, comprising the densities �k(~rm) of the metabo-
lites in the parallelepiped, positioned at ~rm = (xm; ym) with m = 1; 2; : : : ;M

P (k;m) =

0
BBBB@

�1(~r1) �1(~r2) � � � �1(~rM)
�2(~r1) �2(~r2) � � � �2(~rM)

...
... � � �

...
�K(~r1) �K(~r2) � � � �K(~rM)

1
CCCCA : (3:14)

The third matrix 	(m; l) is an M � L matrix comprising the functions

 (~rm; ~wl) = exp[i(kxlxm + kylym)] sinc (
1

2
kxl�x) sinc (

1

2
kyl�y); (3:15)

where ~wl = (kxl; kyl) with l = 1; 2; : : : ; L are the sample positions in the k-domain. We
have

	(m; l) =

0
BBBB@

 (~r1; ~w1)  (~r1; ~w2) � � �  (~r1; ~wL)
 (~r2; ~w1)  (~r2; ~w2) � � �  (~r2; ~wL)

...
... � � �

...
 (~rM ; ~w1)  (~rM ; ~w2) � � �  (~rM ; ~wL)

1
CCCCA : (3:16)

An image of each metabolite can be obtained by �tting the model function, described
by Equation 3.12, to the data. In this equation the elements of the matrix 	(m; l) are
all known: The coordinates ~rm are chosen by the person who process the data, whereas
the sample positions ~wl in the k-domain are set by the person who operates the NMR
scanner. The optimal choice of the ~rm and ~wl is a subject of research. The traditional
method is, as can be seen in the previous section, to distribute the ~wl uniformly, and to
then invoke the 2-D Fourier transformation.
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Chapter 4

Miscellaneous

4.1 DFT as linear Least Squares �t in the time do-

main

In subsection 1.2.4 we have described the discrete Fourier Transform (DFT) of an expo-
nentially decaying NMR FID signal. For a general model function ŝn (n = 0; 1; : : : ; N�1)
the DFT can be written, in matrix form, as

~̂
S = F~̂s; (4:1)

where the vector
~̂
S stands for the frequency-domain model points, also called the Fourier

coe�cients. In Equation 4.1 we have introduced the Fourier matrix, de�ned as [41]

F =
1
p
N

0
BBBB@

1 1 1 � � � 1
1 w1 w2 � � � w(N�1)

...
...

... � � �
...

1 w(N�1) w2(N�1) � � � w(N�1)2

1
CCCCA ; (4:2)

with w being the exponential e
�i2�

N . We should note, that we have set the time-domain
sampling at �t = 1, i.e. we work with the normalized frequency region of -0.5 to 0.5.
De�ning the Fourier matrix F , as done in Equation 4.2, has the important consequence
that F is a unitary matrix, i.e. F�1 = F y.

If we assume, that the vector ~s of the data points of an NMR time-domain signal
can be written as the sum of a vector ~̂s of model function points and a vector ~� of noise
contributions

~s = ~̂s+ ~�; (4:3)

then applying the inverse procedure of Equation 4.1 yields

~s = F�1~̂S + ~�: (4:4)

Equation 4.4 implies, that the Fourier coe�cients can be obtained from a standard
linear Least Squares (LS) �t to the data vector ~s, having as solution (see Equation 2.32)
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~̂
S = (FF y)�1F~s; (4:5)

where we have used the property F�1 = F y. Notice, that FF y equals the identity matrix.

Conclusion:

Calulating the DFT of discretely sampled time-domain signals in fact is the same as
performing a linear LS �t to the time-domain data, with the Fourier coe�cients being the
unknown linear parameters and the model function being a sum of undamped sinusoids
with frequencies located on a uniformly distributed grid (see also [42]).

At the end of this section we like to repeat the words of G. Strang in 'Linear Algebra
and its Applications' [41]

the exponentials eikx are special, and we can pinpoint one central cause: If you di�erentiate

eikx , or integrate it, or translate x to x+ h , the result is still a multiple of eikx.

4.2 Zero-residue modelling by the SVD-based State

Space method

Often the signal processing and successive quantitative data analysis of in vivo NMR sig-
nals is hampered by interference from the signals of water or other substances resident in
the human body. Removal of such signals prior to quanti�cation is desired. In Example
7, Figure 3.4, we already have seen that removal of nondescript unwanted components,
such as lipid signals, by means of SVD-based State Space modelling [23] is feasible. Other
successful examples are shown in [11], [37] and [38]. Several important aspects of mod-
elling nondescript signals are yet to be resolved. First, criteria guaranteeing success of
the modelling seem lacking. This is crucial in the context of automated processing of
large numbers of signals. Second, little is known about the extent to which successful
State Space modelling yields the true model function parameters. This is important
for establishing whether removal of unwanted components a�ects the remaining wanted
components. In this section both aspects are addressed.

In subsection 2.4.2 we have seen that the rank of a Hankel data matrix of a noiseless
time-domain signal, comprising K exponentially decaying, complex-valued, sinusoids is
equal to K. Furthermore, if noise is present, in general the rank becomes full. However,
if the SNR is not too low, the rank still can be approximated by K.

The question now is whether the rank statement is reversible, i.e. does the rank being
equal to K always implies that the signal comprisesK sinusoids? The answer is negative.
In view of this we propose a simple regularization of the SVD-based State Space method,
that should render all conceivable signals tractable, albeit at a cost.

Our approach is inspired by Theorem 7.9 of M. Fiedler in 'Special Matrices and their
Applications in Numerical Mathematics', stating that [43]:

65



any complex-valued, square M � M Hankel matrix with full rank can be decomposed

according to the Vandermonde decomposition (see Equation 2.15) , the number of real-

izations being in�nite.

The 2M � 1 entries of the M �M Hankel matrix can be looked upon as a signal
comprising 2M � 1 data points. According to Fiedler there is a realization among the
in�nite number of Vandermonde decompositions such that any subsequent data point, i.e.
point number 2M , is �tted exactly. This result can applied to zero-residue modelling [44]
of signals, comprising an even number of N = 2M data points. First, we consider the
square M �M Hankel data matrix formed from the �rst 2M � 1 data points. Second,
this matrix is given full rank by adding a square M �M Hankel matrix with entries � on
its longest cross-diagonal and zeroes elsewhere. Alternatively, one can say that an outlier
� is added to data point numberM � 1, where the counting starts at zero. As a result of
this regularization, an in�nite number of Vandermonde decompositions is now possible,
irrespective of the form of the original signal. The third step is that we include the last
data point, resulting in an (M + 1)�M Hankel data matrix, and add a row of zeroes to
the regularizing matrix. This yields a regularized matrix

Sr =

0
BBBBBBBBB@

s0 s1 s2 � � � sM�2 sM�1

s1 s2 s3 � � � sM�1 sM
...

...
... � � �

...
...

sM�2 sM�1 sM � � � s2M�4 s2M�3

sM�1 sM sM+1 � � � s2M�3 s2M�2

sM sM+1 sM+2 � � � s2M�2 s2M�1

1
CCCCCCCCCA
+

0
BBBBBBBBB@

0 0 0 � � � 0 �

0 0 0 � � � � 0
...

...
... � � �

...
...

0 � 0 � � � 0 0
� 0 0 � � � 0 0
0 0 0 � � � 0 0

1
CCCCCCCCCA
: (4:6)

The reason for choosing an (M + 1) �M Hankel data matrix is, that in the SVD-
based State Space method the top or bottom of the left singular vector matrix U is to be
removed (see Equation 2.17), which for a square Hankel data matrix leads to a disallowed
reduction of the rank.

The SVD-based State Space method can now be applied, using theM leading singular
vectors of U . Fitting the ensuingM exponentially decaying sinusoids to the signal, includ-
ing the regularizing outlier �, yields a residue equal to zero. The task is then to identify
those sinusoids that represent the original wanted signal, and to evaluate the extent to
which unwanted components and the regularizing outlier have a�ected the parameters of
the wanted components.

4.3 Example 8: Zero-residue modelling of a noise-

less simulated signal

In this section the zero-residue modelling approach of the previous section is applied to a
noiseless simulated signal of N = 2M = 32 data points, comprising a single exponentially
decaying sinusoid perturbed by an outlier � on the last data point. Note that the spectrum,
corresponding to the outlier, is maximally wide and that modelling by the original State
Space algorithm fails.
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The results of the regularized State Space modelling are presented in Table 4.1. For
both the regularizing outlier � and the unwanted outlier � a value of 1 was taken. It
appeared, that the singular values of the 17 � 16 regularized Hankel data matrix were
ranging from 7.332 to 0.736, indicating that the matrix was well-conditioned.

k ak �k �k �k
1 0.0451 213.4 -0.0107 0.4977
2 0.0451 190.2 -0.0108 0.4357
3 0.0449 166.7 -0.0109 0.3730
4 0.0448 142.8 -0.0110 0.3108
5 0.0448 117.7 -0.0107 0.2487
6 0.0458 88.0 -0.0079 0.1874
7 0.9943 0.8 0.0633 0.1244

8 0.0501 68.6 -0.0026 0.0581
9 0.0472 40.7 -0.0074 -0.0036
10 0.0463 16.0 -0.0088 -0.0657
11 0.0460 -7.8 -0.0095 -0.1280
12 0.0457 -31.2 -0.0098 -0.1904
13 0.0456 -54.4 -0.0101 -0.2527
14 0.0454 -77.4 -0.0103 -0.3151
15 0.0453 -100.5 -0.0105 -0.3775
16 0.0452 -123.5 -0.0106 -0.4399

True 1.0000 0.0 0.0670 0.1230

Table 4.1: Results of regularized State Space modelling of a noiseless simulated exponen-

tially decaying sinusoid with an outlier on the last data point. The model function is

described by ŝn =
P16

k=1 ak exp(i�k) exp[(��k + i2��k)n] with n = 0; 1; : : : ; 31:

With the 16�4 estimated parameters, listed in Table 4.1, the sum of squared residues
was as small as 5:9�10�15, hence we can speak of zero-residue modelling. In this case the
identi�cation of the original signal is easy, considering the combinations of amplitudes,
phases, decay constants and frequencies. As might be expected, the corrupting outlier
� and regularizing outlier � give rise to a wide, constant, background signal that conse-
quently overlaps with the wanted component. As a result of the overlap, the estimate of
the wanted amplitude (a7) is o� by about 0.6%.

4.4 Frequency-selective quantitative data analysis

in the time domain

Sometimes it is of importance to quantify a sub-set of the total set of components, being
present in an NMR signal. If we ignore the components, located outside the frequency
regions of interest, we speak of frequency-selective quanti�cation. In the frequency domain
this comes in a very natural fashion, since we just �t or integrate the peaks that we are
interested in. Recently we have established [9], that frequency-selective quanti�cation is
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equally well feasible, when performing nonlinear Least Squares (NLLS) �tting in the time
domain.

The vehicle chosen for carrying out the NLLS �t is the VARPRO method. If we take
Equation 2.29 to describe a complex-valued NMR time-domain signal, the task at hand
is to minimize the sum of squared residues

R =
N�1X
n=0

jsn �
KX
k=1

ckfk(tn; ~pk)j
2 (4:7)

as a function of the model parameters ~pk. Now, in order to make the equation for R
tractable, we assume that we are dealing with a simulated noiseless signal, comprising only
two damped sinusoids. Furthermore, we only want to �t the component with frequency
�1 and ignore the other component with frequency �2. In the actual �tting process this
means that a starting value of the frequency is to be chosen close to frequency �1.

The essence of the VARPRO method is that it eliminates the linear parameters ck in
the sum of squared residues. This fact, together with the setup, just described, results
into a new expression

R0 =
N�1X
n=0

s�nsn �
f< [

PN�1
n=0 f1(tn; ~p1)

� sn] g2PN�1
n=0 f1(tn; ~p1)

� f1(tn; ~p1)
: (4:8)

Notice, that the model amplitude a1 is not present in Equation 4.8. However, the
signal amplitudes are still present in R0 (via the data points sn). Furthermore, it can be
seen that R0 = 0 when the signal and model function are identical, as it should. If the
signal contains two sinusoids, only one of which is �tted, then R0 > 0.

The task is now to minimize R0 by putting the derivatives of R0 with respect to the
nonlinear parameters to zero. In this process the contribution of the second sinusoid is
seen to arise through the term

N�1X
n=0

f1(tn; ~p1)
� sn =

N�1X
n=0

decay1 sn exp(�i2��1n); (4:9)

where decay1 describes the decay part of the model function. Apparently, this contribution
equals the DFT of the signal at the frequency �1 (apart from the decay term). This leads
to the following important conclusion:

The contribution of the ignored second component with frequency �2 to the time-domain

residue R0 relates to the height of the corresponding frequency-domain peak at the position

of �1.

For j�2 � �1j being much greater than the decay constant of the second component,
this height becomes small but does not tend to zero. In fact, it contributes to lifting the
baseline (baseline tilt).

A consequence of the latter is that frequency-domain tactics, aiming at reducing the
baseline tilt, are also e�ective for the present objective. One of these tactics is to multiply
the time-domain data with a suited weighting function. In this context it is important
to note here, that weighting the data to reduce the baseline tilt, does not corrupt the
time-domain quanti�cation provided that the model function is subjected to the same

treatment.
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For the sake of analytical presentation we now assume that the decay of the signal is
described by the exponential function. In that case the noiseless signal is

sn = c1e
(��1+i2��1)n + c2e

(��2+i2��2)n (4:10)

and the model is

ŝn = ce(��+i2��)n: (4:11)

Using these expressions, in absence of weighting the following trends can be derived:

� The systematic error in the frequency is proportional to �( c2
c1
)� �31(�1 + �2).

� The systematic error in the decay constant is proportional to �( c2
c1
)�21.

� The systematic error in the amplitude is proportional to c2�1.

Since �1 is usually much smaller than 1, it follows that the frequency is the least and
the amplitude is the most a�ected by excluding component 2 from the �t. Furthermore,
in the limit of very small damping all errors become insigni�cant.

If both s0 and ŝ0 now are weighted by 1p
2
, as inspired by [45], then the powers of �1

in the errors for the decay constant and the amplitude are raised by 1. In view of the
smallness of �1 this result constitutes a signi�cant improvement.

The weighting function, just described, involves only the �rst data point and therefore
hinges on the condition that the latter be intact. Should several initial data points have
been lost due to a dead-time problem, more elaborate weighting is called for. We suggest
that in general a smooth weighting function, reaching from zero to one in about 10 to
20 sample intervals, is needed to bring about the necessary reduction of ignored spectral
components in the residue R0. So far, quarter-sine-wave weighting at the beginning of
both the data and the model function yielded satisfactory results.

At the end of this section we present the results of quantifying a subset of the 17
components, comprising an in vivo 13C NMR signal investigated earlier [33]. The NMR
parameters were determined with the VARPRO method, �rst by �tting all components
and then by �tting only two components. In the latter case the quanti�cation was done
without and with applying the weighting function. In Table 4.2 the values for the fre-
quencies, damping constants and amplitudes of the two components are listed. It can be
concluded that the weighting function clearly improves the result of the frequency-selective
�tting.
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parameter no weighting weighting all
�1 -3.1722 -3.1769 -3.1769
�2 -3.1101 -3.1104 -3.1104

dam1 0.150 0.118 0.119
dam2 0.071 0.064 0.064
amp1 725 583 585
amp2 462 429 430

Table 4.2: Model parameters of two NMR components, found by �tting with the VARPRO

method. The total number of NMR components was 17. The columns "no weighting"

and "weighting" refer to �tting only the two components without and with applying the

weighting function (see text). The column "all" refers to �tting all 17 NMR components.

70



Chapter 5

Examples

5.1 Example 9: An EU multicentre quanti�cation

trial of in vivo NMR test signals

One of the objectives of the EU Concerted Action "Cancer and brain disease characteriza-
tion and therapy assessment by quantitative magnetic resonance spectroscopy" (Biomed
1-PL 920432) is to de�ne and adopt standard procedures for the quantitative data analysis
of in vivo NMR signals.

In the context of that objective a multicentre quanti�cation trial was carried out in a
number of participating biochemical research groups. The goal was to �nd out, whether
protocols can be established for quantifying in vivo NMR signals, having the additional
problem of containing unwanted broad background features, overlapping with NMR peaks
of interest.

To be able to compare the performance of the various data-analysis methods, used
in the multicentre trial, it was important to carry out the quanti�cations in a controlled

way, i.e. to work with simulated signals of which the true values of the model parameters
are known (not to the participants of the trial, of course). To that end two series of test
signals were generated, each one containing 10 FID-like NMR time-domain signals.

The two series were derived from two speci�c real-world in vivo NMR signals. The
�rst one was an in vivo 1H NMR echo signal, taken from the right parietal lobe of a human
brain by using a 20 ms STEAM sequence (supplied by P. Gilligan, J. MacEnri and J.T.
Ennis, The Institute of Radiological Sciences, Dublin). The second signal was a water
suppressed 600 MHz single pulse signal of human blood plasma (supplied by J.C. Lindon,
The Wellcome Research Laboratories, Beckenham).

Both types of test signals had in common that they contained a noiseless part, compris-
ing a number of exponentially decaying sinusoids, superimposed on a broad background
signal. Furthermore, in order to obtain the two series of test signals, to each of the two
noiseless parts 10 computer generated noise realizations were added, all being di�erent
but having the same standard deviation.

The following protocol was applied for generating the brain test series:

� Mathematical �t of the experimental brain signal by means of time-domain �tting
with the HSVD method [24], using 20 exponentially decaying sinusoids as base
functions.
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� Separation in the time domain of the background-related signal and the NMR com-
ponents by subtracting 8 HSVD-found exponentials from the experimental signal.

� Removal of the noise from the background-related time-domain signal by means of
the Cadzow enhancement method [17].

� Simulation of a noiseless FID time-domain signal, using the noiseless background-
related signal and the 8 exponentials, described previously. The 8 exponentials were
given the same phase. The time of the �rst datapoint of the FID was taken equal
to zero.

� Addition to the noiseless signal of the previous step of 10 di�erent, computer gen-
erated, Gaussian-distributed noise realizations, each with the same standard devia-
tion.

0.05 0.1 0.15 0.2 0.25 0.3
Frequency (kHz)

Original signal

Simulated signal

Figure 5.1: Spectrum of the original brain signal and of one of the simulated brain test

signals.

In Figure 5.1 a comparison is made between the spectrum of the original brain signal
and of one of the simulated brain test signals. Notice, that at the left side a part of the
residual water peak can be seen. The parameters of the 8 NMR components, used for the
simulation, are listed in Table 5.1. Another impression of the simulation of the brain test
signals can be obtained from Figure 5.2.
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name of signal �le: brain
number of data-points of signal: 512
step-size of signal (ms): 1:000
begin time of signal (ms): 0:000
number of frequencies: 8

Freq. Damp. Ampl. Phase
kHz ms a.u. degr.
0.070 73 2 -10
0.084 130 0.5 -10
0.092 110 3 -10
0.100 89 5 -10
0.130 75 2 -10
0.140 110 1 -10
0.150 17 10 -10
0.170 91 7 -10

Table 5.1: Spectral parameters, used for simulating the brain test signals.

0.05 0.1 0.15 0.2 0.25 0.3
Frequency (kHz)

Simulated signal

Noiseless components

Noiseless background

Figure 5.2: Spectrum of a simulated brain signal, of the noiseless components and of the

noiseless background.

To generate the blood plasma test series, a slightly di�erent protocol was applied:

� Reduction of the number of complex-valued datapoints of the experimental blood
plasma signal from 32768 to 2048 by truncation at the end of the data record.

� Mathematical �t of the truncated signal by means of time-domain �tting with the
HSVD method, using 70 exponentially decaying sinusoids as base functions.
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� Frequency-selective quanti�cation [9] of 9 NMR components in the so-called Fossel
region by means of time-domain �tting with the VARPRO method [5].

� Simulation of a noiseless FID time-domain signal, using the HSVD-found exponen-
tials outside the Fossel region and the 9 VARPRO-found exponentials inside the
Fossel region. The latter components were all given the same phase. The time of
the �rst datapoint of the FID was taken equal to zero.

� Addition to the noiseless signal of the previous step of 10 di�erent, computer gen-
erated, Gaussian-distributed noise realizations, each with the same standard devia-
tion.

name of signal �le: blood plasma
number of data-points of signal: 2048
step-size of signal (ms): 0:054
begin time of signal (ms): 0:000
number of frequencies: 9

Freq. Damp. Ampl. Phase
kHz ms a.u. degr.
-4.779 3.2 37000 -170
-4.691 5.6 7500 -170
-4.655 7.5 5500 -170
-4.585 8.8 3000 -170
-4.298 2.9 40000 -170
-4.231 53.0 9000 -170
-4.217 51.0 10000 -170
-4.075 66.0 1700 -170
-4.061 53.0 2000 -170

Table 5.2: Spectral parameters, used for simulating the blood plasma test signals.

The parameters of the 9 NMR components, used for the simulation, are listed in
Table 5.2. In Figure 5.3 a plot is shown of the spectrum of a simulated blood plasma
signal, of the noiseless components and of the noiseless background.

In order to quantify the two series of test signals, various methods were applied in the
participating research groups, such as nonlinear Least Squares (NLLS) model function
�tting (in either domain), the MaximumEntropy (MaxEnt) method [46] and the Wavelet
transformation [47]. It is beyond the scope of these lecture notes to give a discussion of
the latter two methods. However, it is within the scope to give the quanti�cation results,
as obtained by the VARPRO approach. They are presented in Table 5.3.
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Brain test series
Nr. Mean St.dev. True CR
1 1.81 0.13 2.0 0.15
2 0.51 0.08 0.5 0.14
3 3.10 0.14 3.0 0.17
4 5.32 0.20 5.0 0.17
5 1.92 0.18 2.0 0.22
6 1.06 0.20 1.0 0.22
7 9.87 0.71 10.0 0.61
8 6.98 0.20 7.0 0.15

Plasma test series
Nr. Mean St.dev. True CR
1 37242 591 37000 612
2 7601 1129 7500 1501
3 5718 754 5500 1125
4 3228 171 3000 230
5 38579 303 40000 253
6 8881 67 9000 67
7 10182 68 10000 66
8 1589 40 1700 49
9 1920 45 2000 52

Table 5.3: Mean amplitudes and standard deviations of the two series of test signals, as

obtained by the VARPRO method. Also listed are the true values of the amplitudes and

the related Cramer-Rao lower bounds.

-8-6-4-202
Frequency (kHz)

Simulated signal

Noiseless components

Noiseless background

Figure 5.3: Spectrum of a simulated blood plasma signal, of the noiseless components and

of the noiseless background.
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Before applying the VARPRO method to the brain test signals, the signals were �rst
cleaned from the dominating water signal by applying the Lanczos version of the HSVD
method. To that end the 10 brain signals were �tted with 20 exponentials, using a
212� 300 Hankel data matrix. The exponentials with their frequency in the water region
were subtracted from the time-domain signals.

For both the brain and the blood plasma signals the broad backgrounds were handled
by truncating a number of data points at the beginning of the data records (5 points for
the brain signals and 20 points for the blood plasma signals). Furtheremore, in both cases
the frequency-selective option was chosen, using a weighting function for the �rst (new)
20 datapoints.

When inspecting Table 5.3, it can be concluded, that the standard deviations more or
less follow the pattern of the Cramer-Rao lower bounds. This con�rms VARPRO being
a Maximum Likelihood method.

5.2 Example 10: Quanti�cation of a water suppressed

600 MHz single pulse signal of human blood

plasma

In this example the quanti�cation is described of a water suppressed 600 MHz single
pulse signal of human blood plasma. It is, in fact, the same signal, as already used in
the previous section for obtaining a series of blood plasma-related test signals. In this
section, however, the quanti�cation of the real-world signal itself is discussed.

An aspect, to be mentioned, when quantifying high-resolution in vitro NMR signals,
is the working memory, required for running a computer program based on some form
of model function �tting. If the computer program at hand requires a working matrix,
containing the derivatives of the model function to the parameters for all sampling times,
then a working memory of at least N � L� 16 is needed, where N is the number of data
points and L the number of parameters. The number 16 indicates that we are dealing
with double precision complex-valued numbers.

A typical example tells that for N = 8192 and L = 200 a working memory of at least 26
MBytes is required.

In Figure 5.4 the frequency region of about -4 to -5 KHz of the blood plasma signal is
depicted. It can be seen that narrow NMR components as well as broad ones are present.
The narrow components appear to be doublets.

Since the broad components most probably are due to unresolved overlapping NMR
components, one has to decide to eiher avoid the �tting of the broad components or to
�t them with one or more exponentials (see also [48]).

The following protocol was applied for the two cases:

� The model function, �tted to the data, was a sum of exponentially decaying sinu-
soids.

� The quanti�cation was carried out with NLLS �tting, using the VARPRO approach.
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� Only a selected part of the frequency region was quanti�ed, using the frequency-
selective �tting option of the VARPRO implementation [9].

� The data record was truncated at the end, reducing the number of data points from
32768 to 4096.

� The narrow NMR components were �tted with one exponential.

� The broad NMR components were �tted with one or more exponentials, or were not
included in the �tting process by truncating the data record at the beginning with
600 data points.

� The following prior knowledge was used: One overall (zero-order) phase; Constraints
for the doublet structure; Fixed, predetermined, values of the decay constants of one
of the doublets.

-4.8-4.6-4.4-4.2-4
Frequency (kHz)

Figure 5.4: Part of the spectrum of the 600 MHz single pulse signal of human blood plasma.

When reducing the number of data points from 32768 to 4096, it was �rst veri�ed
that this truncation does not seriously a�ect the quanti�cation results. The latter can be
inspected in Figure 5.5. Another remark to be made is, that the choice of omitting 600
data points at the beginning was also veri�ed before (see also Figure 5.5).

One of the results of the quanti�cations is illustrated in Table 5.4. It concerns the
approach with �tting all components, including the broad ones. The related graphical
presentation of the results is given in Figure 5.6. It can be seen that the residual signal (see
Figure 5.6c) clearly shows features, larger than the noise. This may indicate a deviation
from the exponential decay model.
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Figure 5.5: Estimated amplitude of the largest doublet of the blood plasma signal as a

function of (top) the number of �tted datapoints and (bottom) the number of truncated

initial datapoints. The e�ects on the other doublets were similar.

-5-4.9-4.8-4.7-4.6-4.5-4.4-4.3-4.2
Frequency (kHz)

a

b

c

Figure 5.6: VARPRO results for the blood plasma signal. Spectrum of (a) the experimental

signal, (b) the �tted signal and (c) the residual signal.
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name of signal �le: p19tot.dat
number of data-points of signal: 32768
step-size of signal (ms): 0:054
�tted zero-order phase (degrees): 196:7(0:1)
constrained value of begin time (ms): 0:000
number of data-points in VARPRO �t: 4096
index of �rst data-point: 1
number of frequencies: 14
number of iterations: 21
root mean square of VARPRO �t: 0:1653E + 03

Frequency 2CR Decay 2CR Amplitude 2CR
kHz kHz kHz kHz a.u. a.u.

-4.0610 0.0000 0.0193 0.0002 1996 13
-4.0755 0.0000 0.0193 0.0002 1996 13
-4.2172 0.0000 0.0200 0.0000 9716 17
-4.2310 0.0000 0.0200 0.0000 9716 17
-4.2688 0.0001 0.0193 0.0002 811 15
-4.2819 0.0001 0.0193 0.0002 811 15
-4.3057 0.0002 0.3656 0.0014 46427 172
-4.5788 0.0001 0.0193 0.0002 663 12
-4.5927 0.0001 0.0193 0.0002 663 12
-4.6457 0.0001 0.0193 0.0002 480 14
-4.6600 0.0001 0.0193 0.0002 480 14
-4.6855 0.0005 0.3424 0.0040 21087 290
-4.7600 0.0004 0.1090 0.0071 3366 395
-4.7931 0.0007 0.2751 0.0028 26997 602

Table 5.4: Numerical results of the VARPRO quanti�cation of the blood plasma signal.
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